RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1999, Volume 121, Number 1, Pages 117–138 (Mi tmf801)  

This article is cited in 9 scientific papers (total in 9 papers)

Integral equations for correlation functions of a quantum one-dimensional Bose gas

N. A. Slavnov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: The large-time, long-distance behavior of the temperature correlation functions of a quantum one-dimensional Bose gas is considered. We obtain integral equations, which are closely related to the thermodynamic Bethe ansatz equations and whose solutions describe asymptotic expressions. In the low-temperature limit, the solutions of these equations are expressed through observables of the model.

DOI: https://doi.org/10.4213/tmf801

Full text: PDF file (290 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1999, 121:1, 1358–1376

Bibliographic databases:

Received: 10.01.1999

Citation: N. A. Slavnov, “Integral equations for correlation functions of a quantum one-dimensional Bose gas”, TMF, 121:1 (1999), 117–138; Theoret. and Math. Phys., 121:1 (1999), 1358–1376

Citation in format AMSBIB
\Bibitem{Sla99}
\by N.~A.~Slavnov
\paper Integral equations for correlation functions of a quantum one-dimensional Bose gas
\jour TMF
\yr 1999
\vol 121
\issue 1
\pages 117--138
\mathnet{http://mi.mathnet.ru/tmf801}
\crossref{https://doi.org/10.4213/tmf801}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1739036}
\zmath{https://zbmath.org/?q=an:1005.82503}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 121
\issue 1
\pages 1358--1376
\crossref{https://doi.org/10.1007/BF02557233}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000084350700008}


Linking options:
  • http://mi.mathnet.ru/eng/tmf801
  • https://doi.org/10.4213/tmf801
  • http://mi.mathnet.ru/eng/tmf/v121/i1/p117

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. K. Bullough, N. M. Bogolyubov, V. S. Kapitonov, K. L. Malyshev, I. Timonen, A. V. Rybin, G. G. Varzugin, M. Lindberg, “Quantum Integrable and Nonintegrable Nonlinear Schrödinger Models for Realizable Bose–Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$”, Theoret. and Math. Phys., 134:1 (2003), 47–61  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Caux, JS, “One-particle dynamical correlations in the one-dimensional Bose gas”, Journal of Statistical Mechanics-Theory and Experiment, 2007, P01008  crossref  mathscinet  isi  scopus  scopus  scopus
    3. Kozlowski K.K., Maillet J.M., Slavnov N.A., “Correlation functions for one-dimensional bosons at low temperature”, J Stat Mech Theory Exp, 2011, P03019  crossref  isi  scopus  scopus  scopus
    4. Kozlowski K.K., Maillet J.M., Slavnov N.A., “Long-distance behavior of temperature correlation functions in the one-dimensional Bose gas”, J Stat Mech Theory Exp, 2011, P03018  crossref  isi  scopus  scopus  scopus
    5. Kitanine N. Kozlowski K.K. Maillet J.M. Slavnov N.A. Terras V., “Form Factor Approach to Dynamical Correlation Functions in Critical Models”, J. Stat. Mech.-Theory Exp., 2012, P09001  crossref  mathscinet  isi  elib  scopus  scopus  scopus
    6. N. A. Slavnov, “Asymptotic expansions for correlation functions of one-dimensional bosons”, Theoret. and Math. Phys., 174:1 (2013), 109–121  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. Patu O.I. Kluemper A., “Correlation Lengths of the Repulsive One-Dimensional Bose Gas”, Phys. Rev. A, 88:3 (2013), 033623  crossref  adsnasa  isi  elib  scopus  scopus  scopus
    8. Kozlowski K.K., “Large-Distance and Long-Time Asymptotic Behavior of the Reduced Density Matrix in the Non-Linear Schrodinger Model”, Ann. Henri Poincare, 16:2 (2015), 437–534  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    9. Kozlowski K.K., “On the Thermodynamic Limit of Form Factor Expansions of Dynamical Correlation Functions in the Massless Regime of the Xxz Spin 1/2 Chain”, J. Math. Phys., 59:9, SI (2018), 091408  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:273
    Full text:113
    References:58
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020