|
This article is cited in 7 scientific papers (total in 7 papers)
Sine-Gordon equation on the semi-axis
I. T. Habibullin Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
Abstract:
We investigate the sine-Gordon equation $u_{tt}-u_{xx}+\sin u=0$ on the semi-axis $x>0$. We show that boundary conditions of the forms $u_x(0,t)=c_1\cos(u(0,t)/2)+ c_2\sin(u(0,t)/2)$ and $u(0,t)=c$ are compatible with the Bдcklund transformation. We construct a multisoliton solution satisfying these boundary conditions.
DOI:
https://doi.org/10.4213/tmf832
Full text:
PDF file (235 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 1998, 114:1, 90–98
Bibliographic databases:
Received: 11.08.1997
Citation:
I. T. Habibullin, “Sine-Gordon equation on the semi-axis”, TMF, 114:1 (1998), 115–125; Theoret. and Math. Phys., 114:1 (1998), 90–98
Citation in format AMSBIB
\Bibitem{Hab98}
\by I.~T.~Habibullin
\paper Sine-Gordon equation on the semi-axis
\jour TMF
\yr 1998
\vol 114
\issue 1
\pages 115--125
\mathnet{http://mi.mathnet.ru/tmf832}
\crossref{https://doi.org/10.4213/tmf832}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1756565}
\zmath{https://zbmath.org/?q=an:0946.35089}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 114
\issue 1
\pages 90--98
\crossref{https://doi.org/10.1007/BF02557111}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000073538400006}
Linking options:
http://mi.mathnet.ru/eng/tmf832https://doi.org/10.4213/tmf832 http://mi.mathnet.ru/eng/tmf/v114/i1/p115
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. L. Vereshchagin, “Soliton solutions of an integrable boundary problem on the half-line for the discrete Toda chain”, Theoret. and Math. Phys., 148:3 (2006), 1199–1209
-
A. Kundu, “Yang–Baxter algebra and generation of quantum integrable models”, Theoret. and Math. Phys., 151:3 (2007), 831–842
-
Kundu, A, “Changing Solitons in Classical & Quantum Integrable Defect and Variable Mass sine-Gordon Model”, Journal of Nonlinear Mathematical Physics, 15 (2008), 237
-
Habibullin, I, “Quantum and classical integrable sine-Gordon model with defect”, Nuclear Physics B, 795:3 (2008), 549
-
Shamsutdinov, MA, “Dynamics of magnetic kinks in exchange-coupled ferromagnetic layers”, Physics of Metals and Metallography, 108:4 (2009), 327
-
Corrigan E. Zambon C., “Infinite Dimension Reflection Matrices in the sine-Gordon Model with a Boundary”, J. High Energy Phys., 2012, no. 6, 050
-
Aguirre A.R. Gomes J.F. Ymai L.H. Zimerman A.H., “N=1 Super Sinh-Gordon Model in the Half Line: Breather Solutions”, J. High Energy Phys., 2013, no. 4, 136
|
Number of views: |
This page: | 324 | Full text: | 147 | References: | 35 | First page: | 1 |
|