RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1998, Volume 114, Number 1, Pages 126–136 (Mi tmf833)  

This article is cited in 10 scientific papers (total in 10 papers)

An approximate two-flow solution to the Boltzmann equation

V. D. Gordevskii

V. N. Karazin Kharkiv National University

Abstract: An explicit approximate solution to the three-dimensional nonlinear Boltzmann equation for rigid spheres is constructed. It has the form of a spatially inhomogeneous linear combination of two Maxwellians corresponding to different densities, temperatures, and mass velocities. It is shown that the integral norm of the discrepancy between the left- and right-hand sides of the equation can be made arbitrarily small by choosing appropriate values of the parameters entering the distribution.

DOI: https://doi.org/10.4213/tmf833

Full text: PDF file (232 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1998, 114:1, 99–108

Bibliographic databases:

Received: 09.09.1996
Revised: 03.06.1997

Citation: V. D. Gordevskii, “An approximate two-flow solution to the Boltzmann equation”, TMF, 114:1 (1998), 126–136; Theoret. and Math. Phys., 114:1 (1998), 99–108

Citation in format AMSBIB
\Bibitem{Gor98}
\by V.~D.~Gordevskii
\paper An approximate two-flow solution to the Boltzmann equation
\jour TMF
\yr 1998
\vol 114
\issue 1
\pages 126--136
\mathnet{http://mi.mathnet.ru/tmf833}
\crossref{https://doi.org/10.4213/tmf833}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1756566}
\zmath{https://zbmath.org/?q=an:0967.76083}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 114
\issue 1
\pages 99--108
\crossref{https://doi.org/10.1007/BF02557112}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000073538400007}


Linking options:
  • http://mi.mathnet.ru/eng/tmf833
  • https://doi.org/10.4213/tmf833
  • http://mi.mathnet.ru/eng/tmf/v114/i1/p126

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Gordevsky, VD, “Trimodal approximate solutions of the non-linear Boltzmann equation”, Mathematical Methods in the Applied Sciences, 21:16 (1998), 1479  crossref  mathscinet  adsnasa  isi
    2. Gordevsky, VD, “Approximate Biflow solutions of the kinetic Bryan-Pidduck equation”, Mathematical Methods in the Applied Sciences, 23:13 (2000), 1121  crossref  mathscinet  zmath  adsnasa  isi
    3. V. D. Gordevskii, “Biflow distribution with screw modes”, Theoret. and Math. Phys., 126:2 (2001), 234–249  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. V. D. Gordevskii, “Vortices in a Gas of Hard Spheres”, Theoret. and Math. Phys., 135:2 (2003), 704–713  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. Gordevskyy, VD, “Transitional regime between vortical states of a gas”, Nonlinear Analysis-Theory Methods & Applications, 53:3–4 (2003), 481  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    6. V. D. Gordevskii, “Rotating flows with acceleration and compaction in the model of hard spheres”, Theoret. and Math. Phys., 161:2 (2009), 1558–1566  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. V. D. Gordevskyy, E. S. Sazonova, “Asymmetrical bimodal distributions with screw modes”, Zhurn. matem. fiz., anal., geom., 7:3 (2011), 212–224  mathnet  mathscinet  zmath
    8. V. D. Gordevskii, E. S. Sazonova, “Continuum analogue of bimodal distributions”, Theoret. and Math. Phys., 171:3 (2012), 839–847  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    9. A. A. Gukalov, “Interaction between Accelerating-Packing Flows for the Bryan–Pidduck Model”, Zhurn. matem. fiz., anal., geom., 9:3 (2013), 316–331  mathnet  mathscinet
    10. N. V. Lemesheva, “Bimodal distributions in the space of a non-uniform weight”, Zhurn. matem. fiz., anal., geom., 11:3 (2015), 267–278  mathnet  crossref  mathscinet
  •    Theoretical and Mathematical Physics
    Number of views:
    This page:245
    Full text:119
    References:45
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020