RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2012, Volume 171, Number 2, Pages 196–207 (Mi tmf8359)  

This article is cited in 1 scientific paper (total in 1 paper)

New integrable systems as a limit of the elliptic $SL(N,\mathbb C)$ top

S. Arthamonovab

a Moscow Institute for Physics and Technology, Moscow, Russia
b Institute for Theoretical and Experimental Physics, Moscow, Russia

Abstract: We consider the scaling limit of an elliptic top. This limit is a combination of a scaling of the elliptic top variables, an infinite shift of the spectral parameter, and the trigonometric limit. We give general necessary constraints on the scaling of the variables and examples of such a degeneracy. A certain subclass of limit systems is integrable in the Liouville sense, which can also be shown directly.

Keywords: integrable system, Inozemtsev limit, integrability test, elliptic top

DOI: https://doi.org/10.4213/tmf8359

Full text: PDF file (461 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2012, 171:2, 589–599

Bibliographic databases:

Received: 16.05.2012

Citation: S. Arthamonov, “New integrable systems as a limit of the elliptic $SL(N,\mathbb C)$ top”, TMF, 171:2 (2012), 196–207; Theoret. and Math. Phys., 171:2 (2012), 589–599

Citation in format AMSBIB
\Bibitem{Art12}
\by S.~Arthamonov
\paper New integrable systems as a~limit of the~elliptic $SL(N,\mathbb C)$ top
\jour TMF
\yr 2012
\vol 171
\issue 2
\pages 196--207
\mathnet{http://mi.mathnet.ru/tmf8359}
\crossref{https://doi.org/10.4213/tmf8359}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3168705}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...171..589A}
\elib{http://elibrary.ru/item.asp?id=20732459}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 171
\issue 2
\pages 589--599
\crossref{https://doi.org/10.1007/s11232-012-0057-y}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000304914200002}
\elib{http://elibrary.ru/item.asp?id=17990810}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862146167}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8359
  • https://doi.org/10.4213/tmf8359
  • http://mi.mathnet.ru/eng/tmf/v171/i2/p196

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. Aminov, S. Arthamonov, “Degenerating the elliptic Schlesinger system”, Theoret. and Math. Phys., 174:1 (2013), 1–20  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  elib  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:338
    Full text:93
    References:56
    First page:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020