|
This article is cited in 8 scientific papers (total in 8 papers)
$L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem
A. K. Gushchin Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow, Russia
Abstract:
For solutions of the Dirichlet problem for a second-order elliptic equation, we establish an analogue of the Carleson theorem on $L_p$-estimates. Under the same conditions on the coefficients for which the unique solvability of the considered problem is known, we prove this criterion for the validity of estimate of the solution norm in the space $L_p$ with a measure. We require their Dini continuity on the boundary, but we assume only their measurability and boundedness in the domain under consideration.
Keywords:
elliptic equation, Dirichlet problem, boundary value, nontangent maximal function, Carleson measure
DOI:
https://doi.org/10.4213/tmf8410
Full text:
PDF file (458 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 2013, 174:2, 209–219
Bibliographic databases:
Received: 10.09.2012
Citation:
A. K. Gushchin, “$L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem”, TMF, 174:2 (2013), 243–255; Theoret. and Math. Phys., 174:2 (2013), 209–219
Citation in format AMSBIB
\Bibitem{Gus13}
\by A.~K.~Gushchin
\paper $L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem
\jour TMF
\yr 2013
\vol 174
\issue 2
\pages 243--255
\mathnet{http://mi.mathnet.ru/tmf8410}
\crossref{https://doi.org/10.4213/tmf8410}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3172167}
\zmath{https://zbmath.org/?q=an:1283.35019}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...174..209G}
\elib{http://elibrary.ru/item.asp?id=20732577}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 174
\issue 2
\pages 209--219
\crossref{https://doi.org/10.1007/s11232-013-0018-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000316338500005}
\elib{http://elibrary.ru/item.asp?id=20435082}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874885842}
Linking options:
http://mi.mathnet.ru/eng/tmf8410https://doi.org/10.4213/tmf8410 http://mi.mathnet.ru/eng/tmf/v174/i2/p243
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. K. Guschin, “$L_p$-otsenki nekasatelnoi maksimalnoi funktsii dlya reshenii ellipticheskogo uravneniya vtorogo poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(30) (2013), 53–69
-
V. Zh. Dumanyan, “Solvability of the Dirichlet problem for second-order elliptic equations”, Theoret. and Math. Phys., 180:2 (2014), 917–931
-
A. K. Guschin, “O zadache Dirikhle dlya ellipticheskogo uravneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:1 (2015), 19–43
-
A. K. Gushchin, “V.A. Steklov's work on equations of mathematical physics and development of his results in this field”, Proc. Steklov Inst. Math., 289 (2015), 134–151
-
A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439
-
A. K. Gushchin, “$L_p$-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409
-
A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823–839
-
A. K. Gushchin, “A criterion for the existence of $L_p$ boundary values of solutions to an elliptic equation”, Proc. Steklov Inst. Math., 301 (2018), 44–64
|
Number of views: |
This page: | 470 | Full text: | 68 | References: | 37 | First page: | 24 |
|