RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2013, Volume 175, Number 1, Pages 93–131 (Mi tmf8461)  

This article is cited in 5 scientific papers (total in 5 papers)

Effect of a measuring instrument in the "Bose condensate" of a classical gas in a phase transition and in experiments with negative pressure

V. P. Maslov

Higher School of Economics, Moscow, Russia

Abstract: We systematically present a new approach to classical thermodynamics using asymptotic distributions from number theory that generalize the Bose–Einstein distribution. We justify the transition to the liquid state, the thermodynamics of fluids, and also the behavior of liquids in the region of negative pressures. We present a comparison with experimental data.

Keywords: measuring instrument, Bose condensate, first-order phase transition, fluid, negative pressure, vessel wall influence, Knudsen criterion, Clapeyron–Clausius law

DOI: https://doi.org/10.4213/tmf8461

Full text: PDF file (950 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2013, 175:1, 526–558

Bibliographic databases:

Received: 23.12.2012

Citation: V. P. Maslov, “Effect of a measuring instrument in the "Bose condensate" of a classical gas in a phase transition and in experiments with negative pressure”, TMF, 175:1 (2013), 93–131; Theoret. and Math. Phys., 175:1 (2013), 526–558

Citation in format AMSBIB
\Bibitem{Mas13}
\by V.~P.~Maslov
\paper Effect of a~measuring instrument in the~``Bose condensate" of a~classical gas in a~phase transition and in experiments with negative pressure
\jour TMF
\yr 2013
\vol 175
\issue 1
\pages 93--131
\mathnet{http://mi.mathnet.ru/tmf8461}
\crossref{https://doi.org/10.4213/tmf8461}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3172135}
\zmath{https://zbmath.org/?q=an:1286.82010}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...175..526M}
\elib{http://elibrary.ru/item.asp?id=20732603}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 175
\issue 1
\pages 526--558
\crossref{https://doi.org/10.1007/s11232-013-0043-z}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000318805200007}
\elib{http://elibrary.ru/item.asp?id=20431877}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876424017}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8461
  • https://doi.org/10.4213/tmf8461
  • http://mi.mathnet.ru/eng/tmf/v175/i1/p93

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Maslov V.P., “The Role of Macroinstrument and Microinstrument and of Observable Quantities in the New Conception of Thermodynamics”, Russ. J. Math. Phys., 20:1 (2013), 68–101  crossref  mathscinet  zmath  isi  elib  scopus
    2. V. P. Maslov, “Bose–Einstein-Type Distribution for Nonideal Gas. Two-Liquid Model of Supercritical States and Its Applications”, Math. Notes, 94:2 (2013), 231–237  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    3. V. P. Maslov, “Two-fluid picture of supercritical phenomena”, Theoret. and Math. Phys., 180:3 (2014), 1096–1129  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    4. Maslov V.P., “New Construction of Classical Thermodynamics and Ud-Statistics”, Russ. J. Math. Phys., 21:2 (2014), 256–284  crossref  mathscinet  zmath  isi  scopus
    5. Maslov V.P., “The Relationship Between the Van-der-Waals Model and the Undistinguishing Statistics of Objectively Distinguishable Objects. the New Parastatistics”, Russ. J. Math. Phys., 21:1 (2014), 99–111  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:432
    Full text:101
    References:53
    First page:42

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020