RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2013, Volume 177, Number 1, Pages 137–150 (Mi tmf8523)  

Generalized interaction in multigravity

S. A. Duplij, A. T. Kotvitskii

Karazin Kharkov State University, Kharkov, Ukraine

Abstract: We consider a general approach to describing the interaction in multigravity models in a $D$-dimensional space–time. We present various possibilities for generalizing the invariant volume. We derive the most general form of the interaction potential, which becomes a Pauli–Fierz-type model in the bigravity case. Analyzing this model in detail in the $(3{+}1)$-expansion formalism and also requiring the absence of ghosts leads to this bigravity model being completely equivalent to the Pauli–Fierz model. We thus in a concrete example show that introducing an interaction between metrics is equivalent to introducing the graviton mass.

Keywords: multigravity, bigravity, massive gravity, invariant volume, interaction potential, Pauli–Fierz model

DOI: https://doi.org/10.4213/tmf8523

Full text: PDF file (401 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2013, 177:1, 1400–1411

Bibliographic databases:

Document Type: Article
Received: 26.02.2013
Revised: 21.05.2013

Citation: S. A. Duplij, A. T. Kotvitskii, “Generalized interaction in multigravity”, TMF, 177:1 (2013), 137–150; Theoret. and Math. Phys., 177:1 (2013), 1400–1411

Citation in format AMSBIB
\Bibitem{DupKot13}
\by S.~A.~Duplij, A.~T.~Kotvitskii
\paper Generalized interaction in multigravity
\jour TMF
\yr 2013
\vol 177
\issue 1
\pages 137--150
\mathnet{http://mi.mathnet.ru/tmf8523}
\crossref{https://doi.org/10.4213/tmf8523}
\zmath{https://zbmath.org/?q=an:1297.83032}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1400D}
\elib{http://elibrary.ru/item.asp?id=20732673}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 1
\pages 1400--1411
\crossref{https://doi.org/10.1007/s11232-013-0112-3}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000326625800007}
\elib{http://elibrary.ru/item.asp?id=22095663}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887310174}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8523
  • https://doi.org/10.4213/tmf8523
  • http://mi.mathnet.ru/eng/tmf/v177/i1/p137

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:154
    Full text:17
    References:12
    First page:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017