RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2013, Volume 177, Number 2, Pages 231–246 (Mi tmf8547)  

Cohomological and Poisson structures and integrable hierarchies in tautological subbundles for Birkhoff strata of the Sato Grassmannian

B. G. Konopelchenkoa, G. Ortenzib

a Dipartimento di Matematica e Fisica ``Ennio de Giorgi'', Universit\`{a} del Salento, INFN, Sezione di Lecce, Lecce, Italy
b Dipartimento di Matematica Pura ed Applicazioni, Universit\`{a} di Milano Bicocca, Milano, Italy

Abstract: We consider cohomological and Poisson structures associated with the special tautological subbundles $TB_{W_{1,2,…,n}}$ for the Birkhoff strata of the Sato Grassmannian. We show that the tangent bundles of $TB_{W_{1,2, …,n}}$ are isomorphic to the linear spaces of two-coboundaries with vanishing Harrison cohomology modules. A special class of two-coboundaries is provided by a system of integrable quasilinear partial differential equations. For the big cell, it is the hierarchy of dispersionless Kadomtsev–Petvishvili (dKP) equations. We also demonstrate that the families of ideals for algebraic varieties in $TB_{W_{1,2,…,n}}$ can be viewed as Poisson ideals. This observation establishes a relation between families of algebraic curves in $TB_{W_{\widehat S}}$ and coisotropic deformations of such curves of zero and nonzero genus described by hierarchies of systems of hydrodynamic type; the dKP hierarchy is such a hierarchy. We note the interrelation between cohomological and Poisson structures.

Keywords: Birkhoff stratum, Harrison cohomology, integrable system

DOI: https://doi.org/10.4213/tmf8547

Full text: PDF file (482 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2013, 177:2, 1479–1491

Bibliographic databases:

Received: 07.05.2013

Citation: B. G. Konopelchenko, G. Ortenzi, “Cohomological and Poisson structures and integrable hierarchies in tautological subbundles for Birkhoff strata of the Sato Grassmannian”, TMF, 177:2 (2013), 231–246; Theoret. and Math. Phys., 177:2 (2013), 1479–1491

Citation in format AMSBIB
\Bibitem{KonOrt13}
\by B.~G.~Konopelchenko, G.~Ortenzi
\paper Cohomological and Poisson structures and integrable hierarchies in tautological subbundles for Birkhoff strata of the~Sato Grassmannian
\jour TMF
\yr 2013
\vol 177
\issue 2
\pages 231--246
\mathnet{http://mi.mathnet.ru/tmf8547}
\crossref{https://doi.org/10.4213/tmf8547}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3230760}
\zmath{https://zbmath.org/?q=an:1301.37042}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1479K}
\elib{http://elibrary.ru/item.asp?id=21277079}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 2
\pages 1479--1491
\crossref{https://doi.org/10.1007/s11232-013-0117-y}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000328329300003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84890060666}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8547
  • https://doi.org/10.4213/tmf8547
  • http://mi.mathnet.ru/eng/tmf/v177/i2/p231

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:188
    Full text:45
    References:39
    First page:27

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019