RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



ТМФ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


ТМФ, 2013, том 177, номер 2, страницы 179–221 (Mi tmf8549)  

Эта публикация цитируется в 20 научных статьях (всего в 20 статьях)

Разложение по родам для полиномов ХОМФЛИ

А. Д. Мироновab, А. Ю. Морозовb, А. В. Слепцовb

a Физический институт им. П. Н. Лебедева РАН, Москва, Россия
b Институт теоретической и экспериментальной физики, Москва, Россия

Аннотация: В планарном пределе разложения 'т Хоофта вакуумное среднее значение петли Вильсона в трехмерной теории Черна–Саймонса (другими словами, полином ХОМФЛИ) зависит следующим простым образом от представления (диаграммы Юнга): $H_R(A|q)|_{q=1}=(\sigma_1(A))^{|R|}$. В результате (зависящая от узла) статистическая сумма Оогури–Вафы $\sum_R H_R\chi_R\{\bar p_k\}$ становится тривиальной тау-функцией иерархии Кадомцева–Петвиашвили. Изучаются поправки старшего рода к этой формуле для $H_R$ в форме разложения по степеням $z=q-q^{-1}$. Коэффициенты разложения выражаются через собственные значения операторов разрезания и склейки, т. е. характеров симметрической группы. Кроме того, разложение по $z$ естественным образом представляется в виде произведения. Представление через операторы разрезания и склейки устанавливает связь с теорией Гурвица и ее усложненной интегрируемостью. Полученные соотношения описывают форму разложения по родам для полиномов ХОМФЛИ, которая для соответствующей матричной модели обычно задается с помощью связей типа Вирасоро и топологической рекурсии. Разложение по родам отличается от более изученного разложения слабой связи при конечном числе цветов, которое описывается в терминах инвариантов Васильева и интеграла Концевича.

Ключевые слова: теория Черна–Саймонса, инварианты узлов, разложение 'т Хоофта.

DOI: https://doi.org/10.4213/tmf8549

Полный текст: PDF файл (752 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Theoretical and Mathematical Physics, 2013, 177:2, 1435–1470

Реферативные базы данных:

Тип публикации: Статья
Поступило в редакцию: 13.05.2013

Образец цитирования: А. Д. Миронов, А. Ю. Морозов, А. В. Слепцов, “Разложение по родам для полиномов ХОМФЛИ”, ТМФ, 177:2 (2013), 179–221; Theoret. and Math. Phys., 177:2 (2013), 1435–1470

Цитирование в формате AMSBIB
\RBibitem{MirMorSle13}
\by А.~Д.~Миронов, А.~Ю.~Морозов, А.~В.~Слепцов
\paper Разложение по родам для полиномов ХОМФЛИ
\jour ТМФ
\yr 2013
\vol 177
\issue 2
\pages 179--221
\mathnet{http://mi.mathnet.ru/tmf8549}
\crossref{https://doi.org/10.4213/tmf8549}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3230758}
\zmath{https://zbmath.org/?q=an:06353912}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1435M}
\elib{http://elibrary.ru/item.asp?id=21277077}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 2
\pages 1435--1470
\crossref{https://doi.org/10.1007/s11232-013-0115-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000328329300001}
\elib{http://elibrary.ru/item.asp?id=21899447}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84890108889}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/tmf8549
  • https://doi.org/10.4213/tmf8549
  • http://mi.mathnet.ru/rus/tmf/v177/i2/p179

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. А. С. Анохина, А. А. Морозов, “Процедура каблирования для раскрашенных полиномов ХОМФЛИ”, ТМФ, 178:1 (2014), 3–68  mathnet  crossref  mathscinet  zmath  adsnasa  elib; A. S. Anokhina, A. A. Morozov, “Cabling procedure for the colored HOMFLY polynomials”, Theoret. and Math. Phys., 178:1 (2014), 1–58  crossref  isi  elib
    2. С. Б. Артамонов, А. Д. Миронов, А. Ю. Морозов, “Иерархия дифференциалов и дополнительная градуировка полиномов узлов”, ТМФ, 179:2 (2014), 147–188  mathnet  crossref  mathscinet  adsnasa  elib; S. B. Arthamonov, A. D. Mironov, A. Yu. Morozov, “Differential hierarchy and additional grading of knot polynomials”, Theoret. and Math. Phys., 179:2 (2014), 509–542  crossref  isi
    3. A. Aleksandrov, A. D. Mironov, A. Morozov, A. A. Morozov, “Towards matrix model representation of HOMFLY polynomials”, Письма в ЖЭТФ, 100:4 (2014), 297–304  mathnet  crossref  elib; JETP Letters, 100:4 (2014), 271–278  crossref  isi  elib
    4. A. Sleptsov, “Hidden structures of knot invariants”, Int. J. Mod. Phys. A, 29:29 (2014), 1430063  crossref  mathscinet  zmath  adsnasa  isi  scopus
    5. A. Alexandrov, A. Mironov, A. Morozov, S. Natanzon, “On KP-integrable Hurwitz functions”, J. High Energy Phys., 2014, no. 11, 080  crossref  mathscinet  zmath  isi  scopus
    6. A. Mironov, A. Morozov, A. Morozov, “On colored HOMFLY polynomials for twist knots”, Mod. Phys. Lett. A, 29:34 (2014), 1450183  crossref  zmath  adsnasa  isi  scopus
    7. A. Anokhina, A. Morozov, “Towards $\mathscr R$-matrix construction of Khovanov-Rozansky polynomials I: primary $T$-deformation of HOMFLY”, J. High Energy Phys., 2014, no. 7, 063  crossref  mathscinet  zmath  isi  elib  scopus
    8. Ya. Kononov, A. Morozov, “On the defect and stability of differential expansion”, Письма в ЖЭТФ, 101:12 (2015), 931–934  mathnet  crossref  elib; JETP Letters, 101:12 (2015), 831–834  crossref  isi  elib
    9. Ya. Kononov, A. Morozov, “Factorization of colored knot polynomials at roots of unity”, Phys. Lett. B, 747 (2015), 500–510  crossref  zmath  adsnasa  isi  elib  scopus
    10. A. Mironov, A. Morozov, A. Morozov, P. Ramadevi, V. K. Singh, “Colored HOMFLY polynomials of knots presented as double fat diagrams”, J. High Energy Phys., 2015, no. 7, 109  crossref  mathscinet  zmath  isi  scopus
    11. А. Миронов, А. Морозов, Ан. Морозов, А. Слепцов, “Квантовые матрицы Рака и $3$-нитевые косы в представлениях размера $4$”, Письма в ЖЭТФ, 104:1 (2016), 52–57  mathnet  crossref  elib; A. Mironov, A. Morozov, An. Morozov, A. Sleptsov, “Quantum Racah matrices and 3-strand braids in irreps $R$ with $|R|=4$”, JETP Letters, 104:1 (2016), 56–61  crossref  isi
    12. A. A. Morozov, “The properties of conformal blocks, the AGT hypothesis, and knot polynomials”, Phys. Part. Nuclei, 47:5 (2016), 775–837  crossref  isi  elib  scopus
    13. H. Awata, H. Kanno, T. Matsumoto, A. Mironov, A. Morozov, A. Morozov, Yu. Ohkubo, Y. Zenkevich, “Explicit examples of DIM constraints for network matrix models”, J. High Energy Phys., 2016, no. 7, 103  crossref  mathscinet  zmath  isi  elib  scopus
    14. D. Melnikov, A. Mironov, A. Morozov, “_orig on skew tau-functions in higher spin theory”, J. High Energy Phys., 2016, no. 5, 027  crossref  mathscinet  isi  elib  scopus
    15. A. Morozov, “Differential expansion and rectangular HOMFLY for the figure eight knot”, Nucl. Phys. B, 911 (2016), 582–605  crossref  zmath  isi  scopus
    16. A. Mironov, A. Morozov, A. Morozov, A. Sleptsov, “HOMFLY polynomials in representation $[3,1]$ for 3-strand braids”, J. High Energy Phys., 2016, no. 9, 134  crossref  mathscinet  zmath  isi  scopus
    17. A. Mironov, A. Morozov, A. Morozov, P. Ramadevi, V. K. Singh, A. Sleptsov, “Tabulating knot polynomials for arborescent knots”, J. Phys. A-Math. Theor., 50:8 (2017), 085201  crossref  mathscinet  zmath  isi  scopus
    18. А. Ю. Морозов, А. А. Морозов, А. В. Пополитов, “Матричные модели и размерности в вершинах гиперкубов”, ТМФ, 192:1 (2017), 115–163  mathnet  crossref  mathscinet  adsnasa  elib; A. Yu. Morozov, A. A. Morozov, A. V. Popolitov, “Matrix model and dimensions at hypercube vertices”, Theoret. and Math. Phys., 192:1 (2017), 1039–1079  crossref  isi
    19. A. Mironov, A. Morozov, A. Morozov, P. Ramadevi, V. K. Singh, A. Sleptsov, “Checks of integrality properties in topological strings”, J. High Energy Phys., 2017, no. 8, 139  crossref  mathscinet  zmath  isi  scopus
    20. A. Mironov, S. Mironov, V. Mishnyakov, A. Morozov, A. Sleptsov, “Coloured Alexander polynomials and KP hierarchy”, Phys. Lett. B, 783 (2018), 268–273  crossref  mathscinet  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Просмотров:
    Эта страница:394
    Полный текст:55
    Литература:47
    Первая стр.:23

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019