RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2014, Volume 178, Number 2, Pages 274–289 (Mi tmf8565)  

This article is cited in 4 scientific papers (total in 4 papers)

Relation between Nekrasov functions and Bohr–Sommerfeld periods in the pure $SU(N)$ case

A. V. Popolitov

Institute for Theoretical and Experimental Physics, Moscow, Russia

Abstract: We investigate the duality between the Nekrasov function and the quantized Seiberg–Witten prepotential. We test the hypothesis more thoroughly than has yet been done and do not discuss the motivation and historical context of this duality. We verify the conjecture analytically up to $o(\hbar^6, \ln\Lambda)$ for arbitrary $N$ (giving explicit formulas. Moreover, we present the calculation details that are needed for verification using a computer. This allows verifying the conjecture up to $\hbar^6$ and polynomial degrees of $\Lambda$ for $N=2,3,4$. We consider only the case of the pure $SU(N)$ gauge theory.

Keywords: gauge theory, integrable system

DOI: https://doi.org/10.4213/tmf8565

Full text: PDF file (530 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2014, 178:2, 239–252

Bibliographic databases:

Document Type: Article
Received: 20.06.2013

Citation: A. V. Popolitov, “Relation between Nekrasov functions and Bohr–Sommerfeld periods in the pure $SU(N)$ case”, TMF, 178:2 (2014), 274–289; Theoret. and Math. Phys., 178:2 (2014), 239–252

Citation in format AMSBIB
\Bibitem{Pop14}
\by A.~V.~Popolitov
\paper Relation between Nekrasov functions and Bohr--Sommerfeld periods in the~pure $SU(N)$ case
\jour TMF
\yr 2014
\vol 178
\issue 2
\pages 274--289
\mathnet{http://mi.mathnet.ru/tmf8565}
\crossref{https://doi.org/10.4213/tmf8565}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3301516}
\zmath{https://zbmath.org/?q=an:1298.81198}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...178..239P}
\elib{http://elibrary.ru/item.asp?id=21277106}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 178
\issue 2
\pages 239--252
\crossref{https://doi.org/10.1007/s11232-014-0139-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000333158600005}
\elib{http://elibrary.ru/item.asp?id=21869091}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896945603}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8565
  • https://doi.org/10.4213/tmf8565
  • http://mi.mathnet.ru/eng/tmf/v178/i2/p274

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Beccaria M. Fachechi A. Macorini G. Martina L., “Exact partition functions for deformed $\mathcal{N}=2 $ theories with $ {\mathcal{N}}_f=4 $ flavours”, J. High Energy Phys., 2016, no. 12, 029  crossref  mathscinet  isi  elib  scopus
    2. Beccaria M., Macorini G., “Exact partition functions for the $\Omega$-deformed $ \mathcal{N}={2}^*$ $\mathrm{SU(2)}$ gauge theory”, J. High Energy Phys., 2016, no. 7, 066  crossref  isi  scopus
    3. Beccaria M., “On the large $\Omega$-deformations in the Nekrasov–Shatashvili limit of $ \mathcal{N}={2}^{*} $ SYM”, J. High Energy Phys., 2016, no. 7, 055  crossref  isi  scopus
    4. Ito K., Okubo T., “Quantum Periods For N=2 Su (2) Sqcd Around the Superconformal Point”, Nucl. Phys. B, 934 (2018), 356–379  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:218
    Full text:31
    References:35
    First page:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019