RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2014, Volume 179, Number 3, Pages 317–349 (Mi tmf8570)  

This article is cited in 3 scientific papers (total in 3 papers)

Quasiperiodic solutions of the discrete Chen–Lee–Liu hierarchy

X. Zeng, X. Geng

Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China

Abstract: Using the Lax matrix and elliptic variables, we decompose the discrete Chen–Lee–Liu hierarchy into solvable ordinary differential equations. Based on the theory of the algebraic curve, we straighten the continuous and discrete flows related to the discrete Chen–Lee–Liu hierarchy in Abel–Jacobi coordinates. We introduce the meromorphic function $\phi$, Baker–Akhiezer vector $\bar\psi$, and hyperelliptic curve $\mathcal{K}_N$ according to whose asymptotic properties and the algebro-geometric characters we construct quasiperiodic solutions of the discrete Chen–Lee–Liu hierarchy.

Keywords: discrete Chen–Lee–Liu equation, quasiperiodic solution

DOI: https://doi.org/10.4213/tmf8570

Full text: PDF file (609 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2014, 179:3, 649–678

Bibliographic databases:

Document Type: Article
Received: 02.07.2013
Revised: 20.12.2013

Citation: X. Zeng, X. Geng, “Quasiperiodic solutions of the discrete Chen–Lee–Liu hierarchy”, TMF, 179:3 (2014), 317–349; Theoret. and Math. Phys., 179:3 (2014), 649–678

Citation in format AMSBIB
\Bibitem{ZenGen14}
\by X.~Zeng, X.~Geng
\paper Quasiperiodic solutions of the~discrete Chen--Lee--Liu hierarchy
\jour TMF
\yr 2014
\vol 179
\issue 3
\pages 317--349
\mathnet{http://mi.mathnet.ru/tmf8570}
\crossref{https://doi.org/10.4213/tmf8570}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3305754}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...179..649Z}
\elib{http://elibrary.ru/item.asp?id=21826685}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 179
\issue 3
\pages 649--678
\crossref{https://doi.org/10.1007/s11232-014-0169-7}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000338842800003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903845643}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8570
  • https://doi.org/10.4213/tmf8570
  • http://mi.mathnet.ru/eng/tmf/v179/i3/p317

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Liu N. Wen X.-Y. Liu Ya., “Fission and Fusion Interaction Phenomena of the Discrete Kink Multi-Soliton Solutions For the Chen-Lee-Liu Lattice Equation”, Mod. Phys. Lett. B, 32:19 (2018), 1850211  crossref  mathscinet  isi  scopus
    2. Biswas A., “Chirp-Free Bright Optical Soliton Perturbation With Chen-Lee-Liu Equation By Traveling Wave Hypothesis and Semi-Inverse Variational Principle”, Optik, 172 (2018), 772–776  crossref  isi  scopus
    3. Jawad Anwar Ja'afar Mohamad, Biswas A., Zhou Q., Alfiras M., Moshokoa S.P., Belic M., “Chirped Singular and Combo Optical Solitons For Chen-Lee-Liu Equation With Three Forms of Integration Architecture”, Optik, 178 (2019), 172–177  crossref  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:117
    Full text:15
    References:23
    First page:36

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019