|
Asymptotic form of the spectrum of operators associated with $p$-adic fields
R. S. Ismagilov Bauman Moscow State University for Technology, Moscow,
Russia
Abstract:
We consider a locally compact nonconnected nondiscrete field and study a linear operator given by the sum of the operator of multiplication by a function and the operator of convolution with a generalized function. We derive the asymptotic form of the spectrum of that linear operator. In this problem, we use the generalized $p$-adic Feynman–Kac formula.
Keywords:
asymptotic form, spectrum, Feynman–Kac formula, operator trace, $p$-adic field
DOI:
https://doi.org/10.4213/tmf8638
Full text:
PDF file (374 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 2014, 180:1, 753–758
Bibliographic databases:
Received: 06.01.2014
Citation:
R. S. Ismagilov, “Asymptotic form of the spectrum of operators associated with $p$-adic fields”, TMF, 180:1 (2014), 3–9; Theoret. and Math. Phys., 180:1 (2014), 753–758
Citation in format AMSBIB
\Bibitem{Ism14}
\by R.~S.~Ismagilov
\paper Asymptotic form of the~spectrum of operators associated with $p$-adic fields
\jour TMF
\yr 2014
\vol 180
\issue 1
\pages 3--9
\mathnet{http://mi.mathnet.ru/tmf8638}
\crossref{https://doi.org/10.4213/tmf8638}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3344490}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...180..753I}
\elib{https://elibrary.ru/item.asp?id=21826692}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 180
\issue 1
\pages 753--758
\crossref{https://doi.org/10.1007/s11232-014-0176-8}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000340457900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84905662047}
Linking options:
http://mi.mathnet.ru/eng/tmf8638https://doi.org/10.4213/tmf8638 http://mi.mathnet.ru/eng/tmf/v180/i1/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 376 | Full text: | 83 | References: | 208 | First page: | 42 |
|