RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2014, Volume 180, Number 2, Pages 264–271 (Mi tmf8654)  

This article is cited in 2 scientific papers (total in 2 papers)

Multipoint Vallée Poussin problem for convolution operators with nodes defined inside an angle

V. V. Napalkova, A. A. Nuyatovb

a Institute for Mathematics with Computation Center, Ufa Science Center, RAS, Ufa, Russia
b Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia

Abstract: We prove the solvability of the multipoint Vallée Poussin (interpolation) problem for the kernel of a convolution operator in the case where the zeros of the characteristic function and nodal points (zeros of an entire function) are inside an angle.

Keywords: convolution operator, multipoint Vallée Poussin problem, interpolation, Fisher pair

DOI: https://doi.org/10.4213/tmf8654

Full text: PDF file (363 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2014, 180:2, 983–989

Bibliographic databases:

Received: 13.02.2014

Citation: V. V. Napalkov, A. A. Nuyatov, “Multipoint Vallée Poussin problem for convolution operators with nodes defined inside an angle”, TMF, 180:2 (2014), 264–271; Theoret. and Math. Phys., 180:2 (2014), 983–989

Citation in format AMSBIB
\Bibitem{NapNuy14}
\by V.~V.~Napalkov, A.~A.~Nuyatov
\paper Multipoint Vall\'ee Poussin problem for convolution operators with nodes defined inside an~angle
\jour TMF
\yr 2014
\vol 180
\issue 2
\pages 264--271
\mathnet{http://mi.mathnet.ru/tmf8654}
\crossref{https://doi.org/10.4213/tmf8654}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3344488}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...180..983N}
\elib{http://elibrary.ru/item.asp?id=22834519}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 180
\issue 2
\pages 983--989
\crossref{https://doi.org/10.1007/s11232-014-0193-7}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000341094400008}
\elib{http://elibrary.ru/item.asp?id=23984282}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906505283}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8654
  • https://doi.org/10.4213/tmf8654
  • http://mi.mathnet.ru/eng/tmf/v180/i2/p264

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. G. Merzlyakov, S. V. Popenov, “Interpolyatsiya summami ryadov eksponent s pokazatelyami, sguschayuschimisya v odnom napravlenii”, Kompleksnyi analiz. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 162, VINITI RAN, M., 2019, 62–79  mathnet
    2. Merzlyakov S.G., Popenov S.V., “Interpolation By Sums of Series of Exponentials and Global Cauchy Problem For Convolution Operators”, Dokl. Math., 99:2 (2019), 149–151  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:265
    Full text:44
    References:54
    First page:36

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019