RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2015, Volume 182, Number 1, Pages 28–64 (Mi tmf8709)  

This article is cited in 50 scientific papers (total in 50 papers)

The exact spectrum and mirror duality of the $(AdS_5{\times}S^5)_\eta$ superstring

G. E. Arutyunovabcd, M. de Leeuwe, S. J. van Tongerenfg

a Steklov Mathematical Institute, Moscow, Russia
b Institute for Theoretical Physics, Utrecht University, Utrecht, The Netherlands
c Spinoza Institute, Utrecht University, Utrecht, The Netherlands
d Institute for Theoretical Physics, Hamburg University, Hamburg, Germany
e ETH Zürich, Institut für Theoretische Physik, Zurich, Switzerland
f Institut für Mathematik, Humboldt-Universität zu Berlin, Berlin, Germany
g Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany

Abstract: We discuss the spectrum of a string propagating on $\eta$-deformed AdS$_5\times S^5$ by treating its worldsheet theory as an integrable quantum field theory. The exact $S$-matrix of this field theory is given by a $q$-deformation of the AdS$_5{\times}S^5$ worldsheet $S$-matrix with a real deformation parameter. By considering mirror (double Wick-rotated) versions of these worldsheet theories, we give the thermodynamic Bethe ansatz description of their exact finite-size spectra. Interestingly, this class of models maps onto itself under the mirror transformation. At the string level, this seems to indicate that the light-cone worldsheet theories of strings on particular pairs of backgrounds are related by a double Wick rotation, a feature we call “mirror duality”. We provide a partial verification of these statements at the level of a sigma model by considering reduced actions and their corresponding (mirror) giant magnon solutions.

Keywords: AdS/CFT correspondence, sigma model, exact $S$-matrix, thermodynamic Bethe ansatz

Funding Agency Grant Number
Einstein Stiftung Berlin
European Union's Seventh Framework Programme 317089
Netherlands Organization for Scientific Research VICI 680-47-602
European Research Council 246974
Swiss National Science Foundation 200021-137616
This work is supported in part (S. J. van T.) by the Einstein Foundation Berlin (in the framework of the research project ‘`Gravitation and High Energy Physics") and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ (REA Grant Agreement No. 317089), in part (G. E. A.) by the Netherlands Organization for Scientific Research (NWO) (VICI Grant No. 680-47-602), the ERC (Advanced grant research program No. 246974, "Supersymmetry: a window to non-perturbative physics"), and the D-ITP consortium, a program of the NWO funded by the Dutch Ministry of Education, Culture and Science (OCW), and in part (M. de L.) by the Swiss National Science Foundation (Grant No. 200021-137616).


DOI: https://doi.org/10.4213/tmf8709

Full text: PDF file (776 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2015, 182:1, 23–51

Bibliographic databases:

Received: 14.05.2014

Citation: G. E. Arutyunov, M. de Leeuw, S. J. van Tongeren, “The exact spectrum and mirror duality of the $(AdS_5{\times}S^5)_\eta$ superstring”, TMF, 182:1 (2015), 28–64; Theoret. and Math. Phys., 182:1 (2015), 23–51

Citation in format AMSBIB
\Bibitem{AruDe Van15}
\by G.~E.~Arutyunov, M.~de Leeuw, S.~J.~van Tongeren
\paper The~exact spectrum and mirror duality of the~$(\text{AdS}_5{\times}S^5)_\eta$ superstring
\jour TMF
\yr 2015
\vol 182
\issue 1
\pages 28--64
\mathnet{http://mi.mathnet.ru/tmf8709}
\crossref{https://doi.org/10.4213/tmf8709}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3370565}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...182...23A}
\elib{http://elibrary.ru/item.asp?id=23421689}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 182
\issue 1
\pages 23--51
\crossref{https://doi.org/10.1007/s11232-015-0243-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000349325900002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928685728}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8709
  • https://doi.org/10.4213/tmf8709
  • http://mi.mathnet.ru/eng/tmf/v182/i1/p28

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Prinsloo, V. Regelskis, A. Torrielli, “Integrable open spin-chains in $AdS_3/CFT_2$ correspondences”, Phys. Rev. D, 92:10 (2015), 106006  crossref  mathscinet  adsnasa  isi  scopus
    2. C. Appadu, T. J. Hollowood, “Beta function of k deformed $AdS_5\times S^5$ string theory”, J. High Energy Phys., 2015, no. 11, 095  crossref  mathscinet  isi  scopus
    3. T. Kameyama, H. Kyono, J. Sakamoto, K. Yoshida, “Lax pairs on Yang–Baxter deformed backgrounds”, J. High Energy Phys., 2015, no. 11, 043  crossref  mathscinet  isi  scopus
    4. C. Klimčik, “$\eta$ and $\lambda$ deformations as $\mathcal E$-models”, Nuclear Phys. B, 900 (2015), 259–272  crossref  mathscinet  zmath  adsnasa  isi  scopus
    5. N. Gromov, V. Kazakov, S. Leurent, D. Volin, “Quantum spectral curve for arbitrary state/operator in $AdS_5/CFT_4$”, J. High Energy Phys., 2015, no. 9, 187  crossref  mathscinet  zmath  isi  scopus
    6. B. Vicedo, “Deformed integrable sigma-models, classical $R$-matrices and classical exchange algebra on Drinfel'd doubles”, J. Phys. A, 48:35 (2015), 355203  crossref  mathscinet  zmath  isi  scopus
    7. M. Khouchen, J. Klusoň, “D-brane on deformed $AdS_3\times S^3$”, J. High Energy Phys., 2015, no. 8, 046  crossref  mathscinet  isi  scopus
    8. B. Hoare, A. A. Tseytlin, “On integrable deformations of superstring sigma models related to $AdS_n\times S^n$ supercosets”, Nuclear Phys. B, 897 (2015), 448–478  crossref  mathscinet  zmath  adsnasa  isi  scopus
    9. J. Klusoň, “Uniform gauge for $D1$-brane in general background”, J. High Energy Phys., 2015, no. 6, 181  crossref  mathscinet  zmath  isi  scopus
    10. A. Banerjee, S. Bhattacharya, K. L. Panigrahi, “Spiky strings in $\varkappa$-deformed $AdS$”, J. High Energy Phys., 2015, no. 6, 057  crossref  mathscinet  isi
    11. S. J. van Tongeren, “On classical Yang–Baxter based deformations of the $AdS_5 \times S^5$ superstring”, J. High Energy Phys., 2015, no. 6, 048  crossref  isi  scopus
    12. G. Arutyunov, S. J. van Tongeren, “Double Wick rotating Green-Schwarz strings”, J. High Energy Phys., 2015, no. 5, 027, 28 pp.  crossref  mathscinet  isi  scopus
    13. T. Matsumoto, K. Yoshida, “Yang–Baxter deformations and string dualities”, J. High Energy Phys., 2015, no. 3, 137  crossref  mathscinet  zmath  isi  scopus
    14. G. Arutyunov, R. Borsato, S. Frolov, “Puzzles of $\eta$-deformed $AdS_5\times S^5$”, J. High Energy Phys., 2015, no. 12, 049  crossref  mathscinet  isi  scopus
    15. T. Kameyama, K. Yoshida, “Minimal surfaces in $q$-deformed $AdS_5\times S^5$ with Poincaré coordinates”, J. Phys. A-Math. Theor., 48:24, SI (2015), 245401  crossref  mathscinet  zmath  isi  scopus
    16. S. J. van Tongeren, “Yang–Baxter deformations, $AdS/CFT$, and twist-noncommutative gauge theory”, Nuclear Phys. B, 904 (2016), 148–175  crossref  mathscinet  zmath  adsnasa  isi  scopus
    17. A. Pachoł, S. J. van Tongeren, “Quantum deformations of the flat space superstring”, Phys. Rev. D, 93:2 (2016), 026008  crossref  mathscinet  adsnasa  isi  scopus
    18. B. Hoare, S. J. van Tongeren, “On Jordanian deformations of $\mathrm{AdS}_5$ and supergravity”, J. Phys. A-Math. Theor., 49:43 (2016), 434006  crossref  mathscinet  zmath  isi  elib  scopus
    19. J. Stromwall, A. Torrielli, “${\mathrm{AdS}}_{3}/{\mathrm{CFT}}_{2}$ and $q$-Poincaré superalgebras”, J. Phys. A-Math. Theor., 49:43 (2016), 435402  crossref  mathscinet  zmath  isi  elib  scopus
    20. A. Banerjee, K. L. Panigrahi, “On circular strings in $(\mathrm{AdS}_3\times S^3)_{\varkappa}$”, J. High Energy Phys., 2016, no. 9, 061  crossref  mathscinet  isi  scopus
    21. C. Klimcik, “Poisson–Lie $T$-duals of the bi-Yang–Baxter models”, Phys. Lett. B, 760 (2016), 345–349  crossref  mathscinet  isi  elib  scopus
    22. S. J. van Tongeren, “Introduction to the thermodynamic Bethe ansatz”, J. Phys. A-Math. Theor., 49:32, SI (2016), 323005  crossref  mathscinet  zmath  isi  scopus
    23. T. Kameyama, K. Yoshida, “Generalized quark-antiquark potentials from a $q$-deformed $\mathrm{AdS}_5\times S^5$ background”, Prog. Theor. Exp. Phys., 2016, no. 6, 063B01  crossref  mathscinet  zmath  isi  scopus
    24. N. Gromov, F. Levkovich-Maslyuk, “Quantum Spectral Curve for a cusped Wilson line in $ \mathcal{N}=4 $ SYM”, J. High Energy Phys., 2016, no. 4, 134  crossref  zmath  isi  elib  scopus
    25. J. Kluson, “Canonical description of $T$-duality for fundamental string and $D1$-brane and double Wick rotation”, Int. J. Mod. Phys. A, 31:7 (2016), 1650022  crossref  mathscinet  zmath  isi  elib  scopus
    26. B. Hoare, S. J. van Tongeren, “Non-Split and Split Deformations of $AdS_5$”, J. Phys. A-Math. Theor., 49:48 (2016), 484003  crossref  mathscinet  zmath  isi  scopus
    27. T. Kameyama, “Minimal surfaces in $q$-deformed $AdS_5\times S^5$”, XXIII International Conference on Integrable Systems and Quantum Symmetries (ISQS-23), Journal of Physics Conference Series, 670, eds. Burdik C., Navratil O., Posta S., IOP Publishing Ltd, 2016, UNSP 012028  crossref  isi  scopus
    28. Ch. Ahn, “Finite-size effect of $\eta$-deformed $AdS_5\times S^5$ at strong coupling”, Phys. Lett. B, 767 (2017), 121–125  crossref  isi  scopus
    29. D. Roychowdhury, “Stringy correlations on deformed $\mathrm{AdS}_3\times S^3$”, J. High Energy Phys., 2017, no. 3, 043  crossref  mathscinet  isi  scopus
    30. S. J. van Tongeren, “Almost abelian twists and $AdS/CFT$”, Phys. Lett. B, 765 (2017), 344–351  crossref  zmath  isi  scopus
    31. D. Osten, S. J. van Tongeren, “Abelian Yang–Baxter deformations and $TsT$ transformations”, Nucl. Phys. B, 915 (2017), 184–205  crossref  mathscinet  zmath  isi  scopus
    32. G. Arutyunov, M. Heinze, D. Medina-Rincon, “Integrability of the $\eta$-deformed Neumann–Rosochatius model”, J. Phys. A-Math. Theor., 50:3 (2017), 035401  crossref  mathscinet  zmath  isi  scopus
    33. G. Arutyunov, D. Dorigoni, S. Savin, “Resurgence of the dressing phase for $\mathrm{AdS}_5\times S^5$”, J. High Energy Phys., 2017, no. 1, 055  crossref  mathscinet  isi  scopus
    34. R. Klabbers, S. van Tongeren, “Quantum spectral curve for the $\eta$-deformed $AdS_5\times S^5$ superstring”, Nucl. Phys. B, 925 (2017), 252–318  crossref  mathscinet  zmath  isi  scopus
    35. R. Hernandez, J. Miguel Nieto, “Spinning strings in the $\eta$-deformed Neumann-Rosochatius system”, Phys. Rev. D, 96:8 (2017), 086010  crossref  isi  scopus
    36. B. Hoare, F. K. Seibold, “Poisson-Lie duals of the $\eta$-deformed symmetric space SIGMA model”, J. High Energy Phys., 2017, no. 11, 014  crossref  mathscinet  isi  scopus
    37. S.-M. Ke, W.-L. Yang, K.-X. Jang, Ch. Wang, X.-M. Shuai, Zh.-Yu. Wang, G. Shi, “Yang–Baxter deformations of supercoset sigma models with $\mathbb{Z}_{4m}$ grading”, Chin. Phys. C, 41:11 (2017), 113101  crossref  isi  scopus
    38. G. Arutyunov, M. Heinze, D. Medina-Rincon, “Superintegrability of geodesic motion on the sausage model”, J. Phys. A-Math. Theor., 50:24 (2017), 244002  crossref  mathscinet  zmath  isi  scopus
    39. D. Roychowdhury, “Multispin magnons on deformed $AdS_3\times S^3$”, Phys. Rev. D, 95:8 (2017), 086009  crossref  mathscinet  isi  scopus
    40. A. Banerjee, A. Bhattacharyya, D. Roychowdhury, “Fast spinning strings on $\eta$ deformed $AdS_5\times S^5$”, J. High Energy Phys., 2018, no. 2, 035  crossref  mathscinet  isi  scopus
    41. R. Borsato, J. Stromwall, A. Torrielli, “$q$ -Poincaré invariance of the $AdS_3 / CFT_2$ $R$ -matrix”, Phys. Rev. D, 97:6 (2018), 066001  crossref  isi  scopus
    42. S. P. Barik, K. L. Panigrahi, M. Samal, “Spinning pulsating strings in $(AdS_5 \times S^5)_{\varkappa }$”, Eur. Phys. J. C, 78:4 (2018), 280  crossref  isi  scopus
    43. I. Bakhmatov, E. O. Colgain, M. M. Sheikh-Jabbari, H. Yavartanoo, “Yang–Baxter deformations beyond coset spaces (a slick way to do $TsT$ )”, J. High Energy Phys., 2018, no. 6, 161  crossref  isi  scopus
    44. T. Harmark, M. Wilhelm, “Hagedorn temperature of $AdS_5 / CFT_4$ via integrability”, Phys. Rev. Lett., 120:7 (2018), 071605  crossref  isi  scopus
    45. B. Hoare, F. K. Seibold, “Poisson–Lie duals of the $\eta$-deformed $\mathrm{AdS}_2 \times S^2 \times T^6$ superstring”, J. High Energy Phys., 2018, no. 8, 107  crossref  mathscinet  zmath  isi  scopus
    46. G. Appadu, T. J. Hollowood, D. Price, D. C. Thompson, “Quantum anisotropic SIGMA and lambda models as spin chains”, J. Phys. A-Math. Theor., 51:40 (2018), 405401  crossref  isi  scopus
    47. K. L. Panigrahi, M. Samal, “Finite size effect from classical strings in deformed $\mathrm{AdS}_3\times S^3$”, J. High Energy Phys., 2018, no. 9, 162  crossref  zmath  isi  scopus
    48. A. Banerjee, A. Bhattacharyya, “Probing analytical and numerical integrability: the curious case of $(\mathrm{AdS}_5\times S^5)_\eta$”, J. High Energy Phys., 2018, no. 11, 124  crossref  mathscinet  zmath  isi  scopus
    49. Hoare B., Seibold F.K., “Supergravity Backgrounds of the Eta-Deformed Ads(2) X S-2 X T-6 and Ads(5) X S-5 Superstrings”, J. High Energy Phys., 2019, no. 1, 125  crossref  mathscinet  zmath  isi  scopus
    50. Kluson J., “Note About Integrability of Non-Relativistic String”, Mod. Phys. Lett. A, 34:17 (2019), 1950132  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:274
    Full text:55
    References:59
    First page:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019