RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2014, Volume 181, Number 3, Pages 436–448 (Mi tmf8746)  

Geometric aspects of the holographic duality

D. V. Bykovab

a Steklov Mathematical Institute, RAS, Moscow, Russia
b Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Potsdam-Golm, Germany

Abstract: We briefly survey results related to applying the AdS/CFT correspondence to $\mathcal{N}=1$ supersymmetric models. These models, on one hand, are closest to realistic models of elementary particle physics and, on the other hand, are amenable to quantitative analysis using the AdS/CFT correspondence. Furthermore, they are related to such remarkable geometric objects as Sasakian manifolds and Ricci-flat cones, on which we particularly focus.

Keywords: AdS/CFT correspondence, supersymmetry, Sasakian manifold, del Pezzo surface

Funding Agency Grant Number
Russian Foundation for Basic Research 14-01-00695_a
13-01-12405 офи_м
Ministry of Education and Science of the Russian Federation MK-2510.2014.1


DOI: https://doi.org/10.4213/tmf8746

Full text: PDF file (457 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2014, 181:3, 1499–1508

Bibliographic databases:

Received: 24.06.2014

Citation: D. V. Bykov, “Geometric aspects of the holographic duality”, TMF, 181:3 (2014), 436–448; Theoret. and Math. Phys., 181:3 (2014), 1499–1508

Citation in format AMSBIB
\Bibitem{Byk14}
\by D.~V.~Bykov
\paper Geometric aspects of the~holographic duality
\jour TMF
\yr 2014
\vol 181
\issue 3
\pages 436--448
\mathnet{http://mi.mathnet.ru/tmf8746}
\crossref{https://doi.org/10.4213/tmf8746}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3344547}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...181.1499B}
\elib{http://elibrary.ru/item.asp?id=23421674}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 181
\issue 3
\pages 1499--1508
\crossref{https://doi.org/10.1007/s11232-014-0230-6}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000347702500002}
\elib{http://elibrary.ru/item.asp?id=24029300}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920594127}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8746
  • https://doi.org/10.4213/tmf8746
  • http://mi.mathnet.ru/eng/tmf/v181/i3/p436

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:334
    Full text:62
    References:30
    First page:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019