RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2014, Volume 181, Number 3, Pages 495–514 (Mi tmf8759)  

This article is cited in 15 scientific papers (total in 15 papers)

The BRST-invariant effective action of shadows, conformal fields, and the AdS/CFT correspondence

R. R. Metsaev

Lebedev Physical Institute, RAS, Moscow, Russia

Abstract: We study the completely symmetric, arbitrary-spin, massless and massive fields propagating in anti-de Sitter space. Using the de Donder-type gauge for such fields, we obtain a Lagrangian invariant under the global BRST transformations. We use this Lagrangian to calculate the vacuum partition function and the effective action. We show that the effective action calculated for the nonnormalizable solution of the field equations of motion with the Dirichlet boundary value problem coincides with the BRST-invariant effective action of a shadow. In the case of massless fields, the logarithmic divergence of the effective action results in a simple expression for the BRST-invariant Lagrangian of an arbitrary-spin conformal field. We show that the Nakanishi–Lautrup fields appearing in the BRST-invariant action of conformal fields can be interpreted geometrically as the boundary values of massless fields in anti-de Sitter space.

Keywords: BRST symmetry, conformal field, AdS/CFT-correspondence

DOI: https://doi.org/10.4213/tmf8759

Full text: PDF file (572 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2014, 181:3, 1548–1565

Bibliographic databases:

Received: 30.06.2014

Citation: R. R. Metsaev, “The BRST-invariant effective action of shadows, conformal fields, and the AdS/CFT correspondence”, TMF, 181:3 (2014), 495–514; Theoret. and Math. Phys., 181:3 (2014), 1548–1565

Citation in format AMSBIB
\Bibitem{Met14}
\by R.~R.~Metsaev
\paper The~BRST-invariant effective action of shadows, conformal fields, and the~AdS/CFT correspondence
\jour TMF
\yr 2014
\vol 181
\issue 3
\pages 495--514
\mathnet{http://mi.mathnet.ru/tmf8759}
\crossref{https://doi.org/10.4213/tmf8759}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3344552}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...181.1548M}
\elib{http://elibrary.ru/item.asp?id=23421679}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 181
\issue 3
\pages 1548--1565
\crossref{https://doi.org/10.1007/s11232-014-0235-1}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000347702500007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920626269}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8759
  • https://doi.org/10.4213/tmf8759
  • http://mi.mathnet.ru/eng/tmf/v181/i3/p495

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. R. Metsaev, “Mixed-symmetry fields in AdS(5), conformal fields, and AdS/CFT”, J. High Energy Phys., 2015, no. 1, 077, front matter+33 pp.  crossref  mathscinet  isi
    2. I. L. Buchbinder, K. Koutrolikos, “BRST analysis of the supersymmetric higher spin field models”, J. High Energy Phys., 2015, no. 12, 106  crossref  mathscinet  zmath  isi  elib  scopus
    3. I. L. Buchbinder, V. A. Krykhtin, “Quartic interaction vertex in the massive integer higher spin field theory in a constant electromagnetic field”, Eur. Phys. J. C, 75:9 (2015), 454  crossref  adsnasa  isi  scopus
    4. M. Beccaria, A. A. Tseytlin, “On higher spin partition functions”, J. Phys. A-Math. Theor., 48:27 (2015), 275401  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    5. E. Joung, S. Nakach, A. A. Tseytlin, “Scalar scattering via conformal higher spin exchange”, J. High Energy Phys., 2016, no. 2, 125  crossref  mathscinet  zmath  isi  scopus
    6. S. Gupta, R. Kumar, “Nilpotent symmetries in Jackiw-Pi model: augmented superfield approach”, Int. J. Theor. Phys., 55:2 (2016), 927–948  crossref  mathscinet  zmath  isi  scopus
    7. R. R. Metsaev, “The BRST-BV approach to massless fields adapted for the AdS/CFT correspondence”, Theoret. and Math. Phys., 187:2 (2016), 730–742  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. S. Gupta, R. Kumar, “On augmented superfield approach to vector Schwinger model”, Int. J. Mod. Phys. A, 31:34 (2016), 1650173  crossref  zmath  isi  scopus
    9. R. R. Metsaev, “Long, partial-short, and special conformal fields”, J. High Energy Phys., 2016, no. 5, 096  crossref  mathscinet  isi  elib  scopus
    10. R. R. Metsaev, “The BRST-BV approach to conformal fields”, J. Phys. A-Math. Theor., 49:17 (2016), 175401  crossref  mathscinet  zmath  isi  elib  scopus
    11. R. R. Metsaev, “Continuous spin gauge field in (A)dS space”, Phys. Lett. B, 767 (2017), 458–464  crossref  mathscinet  isi  scopus
    12. M. A. Vasiliev, “Invariant functionals in higher-spin theory”, Nucl. Phys. B, 916 (2017), 219–253  crossref  mathscinet  zmath  isi
    13. S. M. Kuzenko, M. Tsulaia, Nucl. Phys. B, 914 (2017), 160–200  crossref  zmath  isi  elib  scopus
    14. R. R. Metsaev, “Cubic interaction vertices for continuous-spin fields and arbitrary spin massive fields”, J. High Energy Phys., 2017, no. 11, 197  crossref  mathscinet  zmath  isi  scopus
    15. R. R. Metsaev, “BRST-BV approach to continuous-spin field”, Phys. Lett. B, 781 (2018), 568–573  crossref  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:181
    Full text:38
    References:46
    First page:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019