RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2014, Volume 181, Number 3, Pages 464–474 (Mi tmf8765)  

This article is cited in 10 scientific papers (total in 10 papers)

Strong-coupling phases of planar $\mathcal{N}=2^*$ super-Yang–Mills theory

K. L. Zaremboabcde

a Institute for Theoretical and Experimental Physics, Moscow, Russia
b Royal Institute of Technology, Stockholm, Sweden
c Stockholm University, Stockholm, Sweden
d NORDITA, Nordic Institute for Theoretical Physics, Stockholm, Sweden
e Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden

Abstract: The $\mathcal{N}=2^*$ theory (mass deformation of the $\mathcal{N}=4$ super-Yang–Mills theory) undergoes an infinite number of quantum phase transitions in the large-$N$ limit. The phase structure and critical behavior can be analyzed using supersymmetric localization, which reduces the problem to an effective matrix model. We study this model in the strong-coupling phase.

Keywords: supersymmetry, matrix model, $1/N$-expansion

DOI: https://doi.org/10.4213/tmf8765

Full text: PDF file (647 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2014, 181:3, 1522–1530

Bibliographic databases:

Received: 06.07.2014

Citation: K. L. Zarembo, “Strong-coupling phases of planar $\mathcal{N}=2^*$ super-Yang–Mills theory”, TMF, 181:3 (2014), 464–474; Theoret. and Math. Phys., 181:3 (2014), 1522–1530

Citation in format AMSBIB
\Bibitem{Zar14}
\by K.~L.~Zarembo
\paper Strong-coupling phases of planar $\mathcal{N}=2^*$ super-Yang--Mills
theory
\jour TMF
\yr 2014
\vol 181
\issue 3
\pages 464--474
\mathnet{http://mi.mathnet.ru/tmf8765}
\crossref{https://doi.org/10.4213/tmf8765}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3344549}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...181.1522Z}
\elib{https://elibrary.ru/item.asp?id=23421676}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 181
\issue 3
\pages 1522--1530
\crossref{https://doi.org/10.1007/s11232-014-0232-4}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000347702500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920616437}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8765
  • https://doi.org/10.4213/tmf8765
  • http://mi.mathnet.ru/eng/tmf/v181/i3/p464

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. T. J. Hollowood, S. P. Kumar, “Partition function of $\mathcal N=2^*$ SYM on a large four-sphere”, J. High Energy Phys., 2015, no. 12  crossref  mathscinet  isi  elib  scopus
    2. J. G. Russo, “Large $N_c$ from Seiberg-Witten curve and localization”, Phys. Lett. B, 748 (2015), 19–23  crossref  zmath  adsnasa  isi  elib  scopus
    3. X. Chen-Lin, A. Dekel, K. Zarembo, “Holographic Wilson loops in symmetric representations in $\mathcal N=2^*$ super-Yang–Mills theory”, J. High Energy Phys., 2016, no. 2, 109  crossref  mathscinet  zmath  isi  scopus
    4. N. Bobev, H. Elvang, U. Kol, T. Olson, S. S. Pufu, “Holography for $ \mathcal{N} = 1^*$ on $S^4$”, J. High Energy Phys., 2016, no. 10, 095  crossref  mathscinet  isi  elib  scopus
    5. K. Zarembo, “Localization and AdS/CFT correspondence”, J. Phys. A-Math. Theor., 50:44 (2017), 443011  crossref  mathscinet  zmath  isi  scopus
    6. X. Chen-Lin, D. Medina-Rincon, K. Zarembo, “Quantum string test of nonconformal holography”, J. High Energy Phys., 2017, no. 4, 095  crossref  mathscinet  isi  scopus
    7. L. Anderson, N. Drukker, “More large $N$ limits of 3d gauge theories”, J. Phys. A-Math. Theor., 50:34 (2017), 345401  crossref  mathscinet  zmath  isi  scopus
    8. J. T. Liu, L. A. P. Zayas, Sh. Zhou, “Comments on higher rank Wilson loops in $ \mathcal{N} = 2^*$”, J. High Energy Phys., 2018, no. 1, 047  crossref  mathscinet  isi  scopus
    9. J. G. Russo, K. Zarembo, “Wilson loops in antisymmetric representations from localization in supersymmetric gauge theories”, Rev. Math. Phys., 30:7, SI (2018), 1840014  crossref  mathscinet  isi  scopus
    10. Russo J.G., Widen E., Zarembo K., “N=2 Phase Transitions and Holography”, J. High Energy Phys., 2019, no. 2, 196  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:214
    Full text:90
    References:30
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020