RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2014, Volume 181, Number 2, Pages 337–348 (Mi tmf8771)  

This article is cited in 2 scientific papers (total in 2 papers)

Energy splitting in dynamical tunneling

E. V. Vybornyi

Moscow Institute of Electronics and Mathematics, National Research University Higher School of Economics, Moscow, Russia

Abstract: We propose an operator method for calculating the semiclassical asymptotic form of the energy splitting value in the general case of tunneling between symmetric orbits in the phase space. We use this approach in the case of a particle on a circle to obtain the asymptotic form of the energy tunneling splitting related to the over-barrier reflection from the potential. As an example, we consider the quantum pendulum in the rotor regime.

Keywords: dynamical tunneling, tunneling splitting, Schrödinger equation, semiclassical approximation, over-barrier reflection

DOI: https://doi.org/10.4213/tmf8771

Full text: PDF file (423 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2014, 181:2, 1418–1427

Bibliographic databases:

Received: 17.07.2014

Citation: E. V. Vybornyi, “Energy splitting in dynamical tunneling”, TMF, 181:2 (2014), 337–348; Theoret. and Math. Phys., 181:2 (2014), 1418–1427

Citation in format AMSBIB
\Bibitem{Vyb14}
\by E.~V.~Vybornyi
\paper Energy splitting in dynamical tunneling
\jour TMF
\yr 2014
\vol 181
\issue 2
\pages 337--348
\mathnet{http://mi.mathnet.ru/tmf8771}
\crossref{https://doi.org/10.4213/tmf8771}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3344454}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...181.1418V}
\elib{http://elibrary.ru/item.asp?id=22834547}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 181
\issue 2
\pages 1418--1427
\crossref{https://doi.org/10.1007/s11232-014-0222-6}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000345836900007}
\elib{http://elibrary.ru/item.asp?id=24013548}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84915820592}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8771
  • https://doi.org/10.4213/tmf8771
  • http://mi.mathnet.ru/eng/tmf/v181/i2/p337

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Dong Ch., Wang L., Zhao K., “Embedded Mobile Crowd Service Systems Based on Opportunistic Geological Grid and Dynamical Segmentation”, EURASIP J. Embed. Syst., 2015, no. 1, 3  crossref  isi  scopus
    2. M. Karasev, E. Vybornyi, “Bi-orbital states in hyperbolic traps”, Russ. J. Math. Phys., 25:4 (2018), 500–508  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:291
    Full text:83
    References:63
    First page:38

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020