RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2015, Volume 182, Number 1, Pages 76–90 (Mi tmf8779)  

This article is cited in 18 scientific papers (total in 18 papers)

Zero-viscosity limit in a holographic Gauss–Bonnet liquid

S. Grozdanov, A. O. Starinetz

Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK

Abstract: In recent papers, it was hypothesized that there exist dissipationless quantum liquids, i.e., liquids with zero or vanishingly small viscosity and zero entropy production, which nevertheless have nontrivial second-order transport coefficients. A natural candidate for a dissipationless liquid is the hypothetical conformal quantum liquid, whose holographically dual description in the infrared limit is given by the five-dimensional Gauss–Bonnet gravity. It is known that shear viscosity in that theory can be made arbitrarily small as the Gauss–Bonnet coupling parameter approaches a critical value. We evaluate the transport coefficients of a Gauss–Bonnet liquid (nonperturbatively in the coupling parameter; three of the six coefficients were previously unknown) and consider the zero-viscosity limit. We show that three of the five second-order coefficients are nonzero in this limit, but they do not satisfy the criterion of zero entropy production. Hence, the holographic Gauss–Bonnet liquid is not a dissipationless quantum liquid.

Keywords: gauge–gravitational duality, Gauss–Bonnet gravity, hydrodynamics, transport coefficient, viscosity

Funding Agency Grant Number
European Research Council 307955
This paper was supported in part by the European Research Council (ERC Grant Agreement 307955)


DOI: https://doi.org/10.4213/tmf8779

Full text: PDF file (482 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2015, 182:1, 61–73

Bibliographic databases:

Received: 16.08.2014

Citation: S. Grozdanov, A. O. Starinetz, “Zero-viscosity limit in a holographic Gauss–Bonnet liquid”, TMF, 182:1 (2015), 76–90; Theoret. and Math. Phys., 182:1 (2015), 61–73

Citation in format AMSBIB
\Bibitem{GroSta15}
\by S.~Grozdanov, A.~O.~Starinetz
\paper Zero-viscosity limit in a~holographic Gauss--Bonnet liquid
\jour TMF
\yr 2015
\vol 182
\issue 1
\pages 76--90
\mathnet{http://mi.mathnet.ru/tmf8779}
\crossref{https://doi.org/10.4213/tmf8779}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3370567}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...182...61G}
\elib{http://elibrary.ru/item.asp?id=23421692}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 182
\issue 1
\pages 61--73
\crossref{https://doi.org/10.1007/s11232-015-0245-7}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000349325900004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924293288}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8779
  • https://doi.org/10.4213/tmf8779
  • http://mi.mathnet.ru/eng/tmf/v182/i1/p76

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ya. Bu, M. Lublinsky, A. Sharon, “Hydrodynamics dual to Einstein-Gauss-Bonnet gravity: all-order gradient resummation”, J. High Energy Phys., 2015, no. 6, 162  crossref  mathscinet  zmath  isi  scopus
    2. S. Grozdanov, A. O. Starinets, “On the universal identity in second order hydrodynamics”, J. High Energy Phys., 2015, no. 3, 007  crossref  mathscinet  isi  scopus
    3. S. Grozdanov, N. Poovuttikul, “Universality of anomalous conductivities in theories with higher-derivative holographic duals”, J. High Energy Phys., 2016, no. 9, 046  crossref  mathscinet  isi  elib  scopus
    4. S. Grozdanov, N. Kaplis, A. O. Starinets, “From strong to weak coupling in holographic models of thermalization”, J. High Energy Phys., 2016, no. 7, 151  crossref  mathscinet  zmath  isi  elib  scopus
    5. S. Grozdanov, N. Kaplis, “Constructing higher-order hydrodynamics: the third order”, Phys. Rev. D, 93:6 (2016), 066012  crossref  mathscinet  isi  scopus
    6. Ph. Kleinert, J. Probst, “Second-order hydrodynamics and universality in non-conformal holographic fluids”, J. High Energy Phys., 2016, no. 12, 091  crossref  mathscinet  isi  scopus
    7. S. Grozdanov, A. O. Starinets, “Second-order transport, quasinormal modes and zero-viscosity limit in the Gauss-Bonnet holographic fluid”, J. High Energy Phys., 2017, no. 3, 166  crossref  mathscinet  zmath  isi  scopus
    8. Ch. Wu, Y. Chen, M. Huang, “Fluid/gravity correspondence: second order transport coefficients in compactified D4-branes”, J. High Energy Phys., 2017, no. 1, 118  crossref  isi  scopus
    9. P. Glorioso, M. Crossley, H. Liu, “Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current”, J. High Energy Phys., 2017, no. 9, 096  crossref  mathscinet  isi  scopus
    10. B. S. DiNunno, S. Grozdanov, J. F. Pedraza, S. Young, “Holographic constraints on Bjorken hydrodynamics at finite coupling”, J. High Energy Phys., 2017, no. 10, 110  crossref  mathscinet  zmath  isi  scopus
    11. R. A. Konoplya, A. Zhidenko, “Quasinormal modes of Gauss-Bonnet-AdS black holes: towards holographic description of finite coupling”, J. High Energy Phys., 2017, no. 9, 139  crossref  mathscinet  zmath  isi  scopus
    12. S. Grozdanov, W. van der Schee, “Coupling constant corrections in a holographic model of heavy ion collisions”, Phys. Rev. Lett., 119:1 (2017), 011601  crossref  isi  scopus
    13. R. A. Konoplya, A. Zhidenko, “The portrait of eikonal instability in Lovelock theories”, J. Cosmol. Astropart. Phys., 2017, no. 5, 050  crossref  mathscinet  isi
    14. B. Wu, X. Hao, L. Zhao, “Time evolving fluid from Vaidya spacetime”, Phys. Rev. D, 96:4 (2017), 046010  crossref  isi  scopus
    15. Grozdanov S., “On the Connection Between Hydrodynamics and Quantum Chaos in Holographic Theories With Stringy Corrections”, J. High Energy Phys., 2019, no. 1, 048  crossref  isi  scopus
    16. Wu Ch., “Second Order Transport Coefficients of Nonconformal Relativistic Fluids in Various Dimensions From Dp-Brane”, J. High Energy Phys., 2019, no. 1, 097  crossref  isi  scopus
    17. Grozdanov S., Lucas A., Poovuttikul N., “Holography and Hydrodynamics With Weakly Broken Symmetries”, Phys. Rev. D, 99:8 (2019), 086012  crossref  isi  scopus
    18. Grozdanov S., Starinets A.O., “Adding New Branches to the “Christmas Tree” of the Quasinormal Spectrum of Black Branes”, J. High Energy Phys., 2019, no. 4, 080  crossref  mathscinet  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:278
    Full text:65
    References:73
    First page:46

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019