RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2016, Volume 186, Number 3, Pages 433–442 (Mi tmf8824)  

This article is cited in 2 scientific papers (total in 2 papers)

Quantum statistical systems in $D$-dimensional space using a fractional derivative

Z. Korichi, M. Meftah

University Kasdi Merbah Ouargla, Ouargla, Algeria

Abstract: We investigate the thermodynamic properties of some quantum statistical systems with a fractional Hamiltonian in $D$-dimensional space. We calculate the partition function of the system of $N$ fractional quantum oscillators and the thermodynamic quantities associated with it. We consider the thermal and critical properties of both Bose and Fermi gases in the context of the fractional energy and described by a fractional derivative.

Keywords: quantum system, partition function, fractional derivative, oscillator, Bose system, condensation, critical temperature, Fermi system, thermodynamic property

DOI: https://doi.org/10.4213/tmf8824

Full text: PDF file (400 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2016, 186:3, 374–382

Bibliographic databases:

PACS: 03.65.-w, 03.65. Db, 05.30.-d, 05.40. Fb
Received: 23.11.2014
Revised: 05.03.2015

Citation: Z. Korichi, M. Meftah, “Quantum statistical systems in $D$-dimensional space using a fractional derivative”, TMF, 186:3 (2016), 433–442; Theoret. and Math. Phys., 186:3 (2016), 374–382

Citation in format AMSBIB
\Bibitem{KorMef16}
\by Z.~Korichi, M.~Meftah
\paper Quantum statistical systems in $D$-dimensional space using a~fractional derivative
\jour TMF
\yr 2016
\vol 186
\issue 3
\pages 433--442
\mathnet{http://mi.mathnet.ru/tmf8824}
\crossref{https://doi.org/10.4213/tmf8824}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3507513}
\elib{http://elibrary.ru/item.asp?id=25707868}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 186
\issue 3
\pages 374--382
\crossref{https://doi.org/10.1134/S0040577916030065}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000373965600006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962679881}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8824
  • https://doi.org/10.4213/tmf8824
  • http://mi.mathnet.ru/eng/tmf/v186/i3/p433

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. Bekhouche, M. T. Meftah, Z. Korichi, “Comparative study for $N D$-dimensional quantum oscillators with respect fractional derivative senses”, Few-Body Syst., 58:5 (2017), UNSP 153  crossref  isi  scopus
    2. N. Laskin, Fractional Quantum Mechanics, World Scientific Publ Co Pte Ltd, 2018, 341 pp.  crossref  mathscinet  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:319
    Full text:40
    References:34
    First page:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020