RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2015, Volume 184, Number 1, Pages 3–40 (Mi tmf8856)  

This article is cited in 6 scientific papers (total in 6 papers)

Matching branches of a nonperturbative conformal block at its singularity divisor

H. Itoyamaab, A. D. Mironovcde, A. Yu. Morozovde

a Osaka City University Advanced Mathematical Institute (OCAMI), Osaka, Japan
b Department of Mathematics and Physics, Osaka City University, Osaka, Japan
c Lebedev Physical Institute, Moscow, Russia
d Institute for Experimental and Theoretical Physics, Moscow, Russia
e National Research Nuclear University MEPhI, Moscow, Russia

Abstract: A conformal block is a function of many variables, usually represented as a formal series with coefficients that are certain matrix elements in the chiral {(}i.e., Virasoro{\rm)} algebra. A nonperturbative conformal block is a multivalued function defined globally over the space of dimensions and has many branches and, perhaps, additional free parameters not seen at the perturbative level. We discuss additional complications of the nonperturbative description that arise because all the best-studied examples of conformal blocks are at the singularity locus in the moduli space {\rm(}at divisors of the coefficients or, simply, at zeros of the Kac determinant{\rm).} A typical example is the Ashkin–Teller point, where at least two naive nonperturbative expressions are provided by the elliptic Dotsenko–Fateev integral and by the celebrated Zamolodchikov formula in terms of theta constants, and they differ. The situation is somewhat similar at the Ising and other minimal model points.

Keywords: two-dimensional conformal theory, conformal block

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation НШ-1500.2014.2
Russian Foundation for Basic Research 13-02-00457
13-02-00478
13-02-91371-ST
14-01-92691-Ind
12-02-92108-Яф_a
National Council for Scientific and Technological Development (CNPq)
Ministry of Education, Culture, Sports, Science and Technology, Japan 23540316
Japan Society for the Promotion of Science FY2010-2011


DOI: https://doi.org/10.4213/tmf8856

Full text: PDF file (840 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2015, 184:1, 891–923

Bibliographic databases:

Received: 20.01.2015

Citation: H. Itoyama, A. D. Mironov, A. Yu. Morozov, “Matching branches of a nonperturbative conformal block at its singularity divisor”, TMF, 184:1 (2015), 3–40; Theoret. and Math. Phys., 184:1 (2015), 891–923

Citation in format AMSBIB
\Bibitem{ItoMirMor15}
\by H.~Itoyama, A.~D.~Mironov, A.~Yu.~Morozov
\paper Matching branches of a~nonperturbative conformal block at its singularity divisor
\jour TMF
\yr 2015
\vol 184
\issue 1
\pages 3--40
\mathnet{http://mi.mathnet.ru/tmf8856}
\crossref{https://doi.org/10.4213/tmf8856}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3399662}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...184..891I}
\elib{http://elibrary.ru/item.asp?id=24073847}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 184
\issue 1
\pages 891--923
\crossref{https://doi.org/10.1007/s11232-015-0305-z}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000360193700001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940184474}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8856
  • https://doi.org/10.4213/tmf8856
  • http://mi.mathnet.ru/eng/tmf/v184/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Morozov, Y. Zenkevich, “Decomposing Nekrasov decomposition”, J. High Energy Phys., 2016, no. 2, 098  crossref  mathscinet  isi  scopus
    2. M. Beccaria, A. Fachechi, G. Macorini, L. Martina, “Exact partition functions for deformed $ \mathcal{N}=2 $ theories with $ {\mathcal{N}}_f=4 $ flavours”, J. High Energy Phys., 2016, no. 12, 029  crossref  mathscinet  isi  elib  scopus
    3. N. Nemkov, “On new exact conformal blocks and Nekrasov functions”, J. High Energy Phys., 2016, no. 12  crossref  mathscinet  isi  elib  scopus
    4. A. Mironov, A. Morozov, “On determinant representation and integrability of Nekrasov functions”, Phys. Lett. B, 773 (2017), 34–46  crossref  mathscinet  zmath  isi  scopus
    5. H. Itoyama, A. Mironov, A. Morozov, “Rainbow tensor model with enhanced symmetry and extreme melonic dominance”, Phys. Lett. B, 771 (2017), 180–188  crossref  zmath  isi  scopus
    6. H. Itoyama, A. Mironov, A. Morozov, “Cut and join operator ring in tensor models”, Nucl. Phys. B, 932 (2018), 52–118  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:328
    Full text:69
    References:46
    First page:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020