RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2015, Volume 184, Number 2, Pages 244–252 (Mi tmf8863)  

Exact two-soliton solutions and two-periodic solutions for the perturbed mKdV equation with variable coefficients

Ying Huang, Lin Liang

School of Mathematics and Statistics, Chuxiong Normal University, Chuxiong, China

Abstract: We discuss the Darboux transformation method for a modified Korteweg–de Vries equation with variable coefficients and perturbing terms in detail based on the general form of the Darboux transformations for some nonlinear evolution equations solvable by the Ablowitz–Kaup–Newell–Segur inverse scattering method. We use this method to generate families of two-soliton solutions and two-periodic solutions.

Keywords: Darboux transformation, perturbed mKdV equation, two-soliton solution, two-periodic solution

Funding Agency Grant Number
National Natural Science Foundation of China 11261001
Yunnan Provincial Department of Education Research Foundation 2012Y130


DOI: https://doi.org/10.4213/tmf8863

Full text: PDF file (321 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2015, 184:2, 1106–1113

Bibliographic databases:

MSC: 35C07;35C08;35C09
Received: 03.02.2015
Revised: 04.03.2015

Citation: Ying Huang, Lin Liang, “Exact two-soliton solutions and two-periodic solutions for the perturbed mKdV equation with variable coefficients”, TMF, 184:2 (2015), 244–252; Theoret. and Math. Phys., 184:2 (2015), 1106–1113

Citation in format AMSBIB
\Bibitem{YinLin15}
\by Ying~Huang, Lin~Liang
\paper Exact two-soliton solutions and two-periodic solutions for the perturbed mKdV equation with variable coefficients
\jour TMF
\yr 2015
\vol 184
\issue 2
\pages 244--252
\mathnet{http://mi.mathnet.ru/tmf8863}
\crossref{https://doi.org/10.4213/tmf8863}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3399677}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...184.1106H}
\elib{http://elibrary.ru/item.asp?id=24073863}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 184
\issue 2
\pages 1106--1113
\crossref{https://doi.org/10.1007/s11232-015-0320-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000361532600004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84942104883}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8863
  • https://doi.org/10.4213/tmf8863
  • http://mi.mathnet.ru/eng/tmf/v184/i2/p244

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:245
    Full text:9
    References:13
    First page:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019