RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2016, Volume 186, Number 3, Pages 456–474 (Mi tmf8944)  

This article is cited in 1 scientific paper (total in 1 paper)

Classifying magnetic and superfluid equilibrium states in magnets with the spin $s=1$

M. Yu. Kovalevsky

National Science Center "Kharkov Institute for Physics and Technology", Kharkov, Ukraine

Abstract: Based on the method of quasiaverages, we classify magnetic and superfluid equilibrium states in magnets with the spin $s=1$. Under certain simplifications, assumptions about the residual symmetry of degenerate states and the transformation properties of order parameter operators under transformations generated by additive integrals of motions lead to linear algebraic equations for a classification of the equilibrium means of the order parameters. We consider different cases of the magnetic $SO(3)$ or $SU(3)$ symmetry breaking and obtain solutions for the vector and tensor order parameters for particular forms of the parameters of the residual symmetry generators. We study the equilibriums of magnets with simultaneously broken phase and magnetic symmetries. We find solutions of the classification equations for superfluid equilibrium states and establish relations between the parameters of the residual symmetry generator that allow the thermodynamic coexistence of nonzero equilibrium means of the order parameters.

Keywords: spin, quadrupole matrix, order parameter, symmetry, quasiaverage

DOI: https://doi.org/10.4213/tmf8944

Full text: PDF file (471 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2016, 186:3, 395–410

Bibliographic databases:

PACS: 75.10-b
Received: 08.04.2015
Revised: 30.06.2015

Citation: M. Yu. Kovalevsky, “Classifying magnetic and superfluid equilibrium states in magnets with the spin $s=1$”, TMF, 186:3 (2016), 456–474; Theoret. and Math. Phys., 186:3 (2016), 395–410

Citation in format AMSBIB
\Bibitem{Kov16}
\by M.~Yu.~Kovalevsky
\paper Classifying magnetic and superfluid equilibrium states in magnets with the~spin $s=1$
\jour TMF
\yr 2016
\vol 186
\issue 3
\pages 456--474
\mathnet{http://mi.mathnet.ru/tmf8944}
\crossref{https://doi.org/10.4213/tmf8944}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3507515}
\elib{http://elibrary.ru/item.asp?id=25707871}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 186
\issue 3
\pages 395--410
\crossref{https://doi.org/10.1134/S0040577916030089}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000373965600008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962767670}


Linking options:
  • http://mi.mathnet.ru/eng/tmf8944
  • https://doi.org/10.4213/tmf8944
  • http://mi.mathnet.ru/eng/tmf/v186/i3/p456

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. N. Bogolyubov (Jr.), A. V. Glushchenko, M. Yu. Kovalevsky, “Quasiaverages and degenerate quantum equilibriums of magnetic systems with $SU(3)$ symmetry of the exchange interaction”, Theoret. and Math. Phys., 195:2 (2018), 704–717  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:163
    Full text:27
    References:25
    First page:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020