|
This article is cited in 2 scientific papers (total in 2 papers)
Classification of four-dimensional real Lie bialgebras of symplectic type and their Poisson–Lie groups
J. Abedi-Fardadab, A. Rezaei-Aghdama, Gh. Haghighatdoostcb a Department of Physics, Azarbaijan Shahid Madani University, Tabriz, Iran
b Department of Mathematics, University of Bonab, Tabriz, Iran
c Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
Abstract:
We classify all four-dimensional real Lie bialgebras of symplectic type and obtain the classical $r$-matrices for these Lie bialgebras and Poisson structures on all the associated four-dimensional Poisson–Lie groups. We obtain some new integrable models where a Poisson–Lie group plays the role of the phase space and its dual Lie group plays the role of the symmetry group of the system.
Keywords:
Lie bialgebra, Poisson–Lie group, classical $r$-matrix, integrable system
DOI:
https://doi.org/10.4213/tmf9020
Full text:
PDF file (557 kB)
First page: PDF file
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 2017, 190:1, 1–17
Bibliographic databases:
Received: 04.08.2015 Revised: 21.12.2015
Citation:
J. Abedi-Fardad, A. Rezaei-Aghdam, Gh. Haghighatdoost, “Classification of four-dimensional real Lie bialgebras of symplectic type and their Poisson–Lie groups”, TMF, 190:1 (2017), 3–20; Theoret. and Math. Phys., 190:1 (2017), 1–17
Citation in format AMSBIB
\Bibitem{AbeRezHag17}
\by J.~Abedi-Fardad, A.~Rezaei-Aghdam, Gh.~Haghighatdoost
\paper Classification of four-dimensional real Lie bialgebras of symplectic type and their Poisson--Lie groups
\jour TMF
\yr 2017
\vol 190
\issue 1
\pages 3--20
\mathnet{http://mi.mathnet.ru/tmf9020}
\crossref{https://doi.org/10.4213/tmf9020}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3598770}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...190....1A}
\elib{http://elibrary.ru/item.asp?id=28172167}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 190
\issue 1
\pages 1--17
\crossref{https://doi.org/10.1134/S0040577917010019}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000394442700001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011818216}
Linking options:
http://mi.mathnet.ru/eng/tmf9020https://doi.org/10.4213/tmf9020 http://mi.mathnet.ru/eng/tmf/v190/i1/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Abedi-Fardad J., Rezaei-Aghdam A., Haghighatdoost G., “Some Compatible Poisson Structures and Integrable Bi-Hamiltonian Systems on Four Dimensional and Nilpotent Six Dimensional Symplectic Real Lie Groups”, J. Nonlinear Math. Phys., 24:2 (2017), 149–170
-
Z. Ravanpak, A. Rezaei-Aghdam, G. Haghighatdoost, “Invariant Poisson–Nijenhuis structures on Lie groups and classification”, Int. J. Geom. Methods Mod. Phys., 15:4 (2018), 1850059
|
Number of views: |
This page: | 219 | References: | 25 | First page: | 22 |
|