RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2017, Volume 190, Number 1, Pages 3–20 (Mi tmf9020)  

This article is cited in 2 scientific papers (total in 2 papers)

Classification of four-dimensional real Lie bialgebras of symplectic type and their Poisson–Lie groups

J. Abedi-Fardadab, A. Rezaei-Aghdama, Gh. Haghighatdoostcb

a Department of Physics, Azarbaijan Shahid Madani University, Tabriz, Iran
b Department of Mathematics, University of Bonab, Tabriz, Iran
c Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran

Abstract: We classify all four-dimensional real Lie bialgebras of symplectic type and obtain the classical $r$-matrices for these Lie bialgebras and Poisson structures on all the associated four-dimensional Poisson–Lie groups. We obtain some new integrable models where a Poisson–Lie group plays the role of the phase space and its dual Lie group plays the role of the symmetry group of the system.

Keywords: Lie bialgebra, Poisson–Lie group, classical $r$-matrix, integrable system

DOI: https://doi.org/10.4213/tmf9020

Full text: PDF file (557 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2017, 190:1, 1–17

Bibliographic databases:

Received: 04.08.2015
Revised: 21.12.2015

Citation: J. Abedi-Fardad, A. Rezaei-Aghdam, Gh. Haghighatdoost, “Classification of four-dimensional real Lie bialgebras of symplectic type and their Poisson–Lie groups”, TMF, 190:1 (2017), 3–20; Theoret. and Math. Phys., 190:1 (2017), 1–17

Citation in format AMSBIB
\Bibitem{AbeRezHag17}
\by J.~Abedi-Fardad, A.~Rezaei-Aghdam, Gh.~Haghighatdoost
\paper Classification of four-dimensional real Lie bialgebras of symplectic type and their Poisson--Lie groups
\jour TMF
\yr 2017
\vol 190
\issue 1
\pages 3--20
\mathnet{http://mi.mathnet.ru/tmf9020}
\crossref{https://doi.org/10.4213/tmf9020}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3598770}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...190....1A}
\elib{http://elibrary.ru/item.asp?id=28172167}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 190
\issue 1
\pages 1--17
\crossref{https://doi.org/10.1134/S0040577917010019}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000394442700001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011818216}


Linking options:
  • http://mi.mathnet.ru/eng/tmf9020
  • https://doi.org/10.4213/tmf9020
  • http://mi.mathnet.ru/eng/tmf/v190/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Abedi-Fardad J., Rezaei-Aghdam A., Haghighatdoost G., “Some Compatible Poisson Structures and Integrable Bi-Hamiltonian Systems on Four Dimensional and Nilpotent Six Dimensional Symplectic Real Lie Groups”, J. Nonlinear Math. Phys., 24:2 (2017), 149–170  crossref  mathscinet  isi  scopus
    2. Z. Ravanpak, A. Rezaei-Aghdam, G. Haghighatdoost, “Invariant Poisson–Nijenhuis structures on Lie groups and classification”, Int. J. Geom. Methods Mod. Phys., 15:4 (2018), 1850059  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:219
    References:25
    First page:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019