RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2016, Volume 187, Number 2, Pages 263–282 (Mi tmf9068)  

This article is cited in 2 scientific papers (total in 2 papers)

$SU(2)/SL(2)$ knot invariants and Kontsevich–Soibelman monodromies

D. M. Galakhovab, A. D. Mironovcdea, A. Yu. Morozovdea

a New High Energy Theory Center, Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ, USA
b Institute for Information Transmission Problems, Moscow, Russia
c Lebedev Physical Institute, RAS, Moscow, Russia
d Institute for Theoretical and Experiment Physics, Moscow, Russia
e National Research Nuclear University MEPhI, Moscow, Russia

Abstract: We review the Reshetikhin–Turaev approach for constructing noncompact knot invariants involving $R$-matrices associated with infinite-dimensional representations, primarily those constructed from the Faddeev quantum dilogarithm. The corresponding formulas can be obtained from modular transformations of conformal blocks as their Kontsevich–Soibelman monodromies and are presented in the form of transcendental integrals, where the main issue is working with the integration contours. We discuss possibilities for extracting more explicit and convenient expressions that can be compared with the ordinary (compact) knot polynomials coming from finite-dimensional representations of simple Lie algebras, with their limits and properties. In particular, the quantum A-polynomials and difference equations for colored Jones polynomials are the same as in the compact case, but the equations in the noncompact case are homogeneous and have a nontrivial right-hand side for ordinary Jones polynomials.

Keywords: Chern–Simons theory, Kontsevich–Soibelman monodromy, Wilson average, $R$-matrix, modular double, quantum A-polynomial

Funding Agency Grant Number
Russian Science Foundation 14-50-00150
This research was performed at the Institute for Information Transmission Problems and was funded by a grant from the Russian Science Foundation (Grant No. 14-50-00150).


DOI: https://doi.org/10.4213/tmf9068

Full text: PDF file (933 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2016, 187:2, 678–694

Bibliographic databases:

PACS: 11.15.Yc, 02.10.Kn, 02.20.Uw
Received: 19.10.2015

Citation: D. M. Galakhov, A. D. Mironov, A. Yu. Morozov, “$SU(2)/SL(2)$ knot invariants and Kontsevich–Soibelman monodromies”, TMF, 187:2 (2016), 263–282; Theoret. and Math. Phys., 187:2 (2016), 678–694

Citation in format AMSBIB
\Bibitem{GalMirMor16}
\by D.~M.~Galakhov, A.~D.~Mironov, A.~Yu.~Morozov
\paper $SU(2)/SL(2)$ knot invariants and Kontsevich--Soibelman monodromies
\jour TMF
\yr 2016
\vol 187
\issue 2
\pages 263--282
\mathnet{http://mi.mathnet.ru/tmf9068}
\crossref{https://doi.org/10.4213/tmf9068}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3507536}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...187..678G}
\elib{http://elibrary.ru/item.asp?id=26414425}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 187
\issue 2
\pages 678--694
\crossref{https://doi.org/10.1134/S0040577916050056}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000377250400004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84973482168}


Linking options:
  • http://mi.mathnet.ru/eng/tmf9068
  • https://doi.org/10.4213/tmf9068
  • http://mi.mathnet.ru/eng/tmf/v187/i2/p263

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Andrei Mironov, Alexei Morozov, “Check-Operators and Quantum Spectral Curves”, SIGMA, 13 (2017), 047, 17 pp.  mathnet  crossref
    2. Ch.-Ts. Chan, A. Mironov, A. Morozov, A. Sleptsov, “Orthogonal polynomials in mathematical physics”, Rev. Math. Phys., 30:6, SI (2018), 1840005  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:218
    Full text:13
    References:40
    First page:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019