Teoreticheskaya i Matematicheskaya Fizika
General information
Latest issue
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TMF, 2016, Volume 188, Number 1, Pages 85–120 (Mi tmf9085)  

This article is cited in 10 scientific papers (total in 10 papers)

$(1+1)$-Correlators and moving massive defects

D. S. Ageeva, I. Ya. Aref'evaa, M. D. Tikhanovskayaba

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b National Engineering Physics Institute "MEPhI", Moscow, Russia

Abstract: We study correlation functions of scalar operators on the boundary of the AdS$_3$ space deformed by moving massive particles in the context of the AdS/CFT duality. To calculate two-point correlation functions, we use the geodesic approximation and the renormalized image method, obtained from the traditional image method with the renormalization taken into account. We compare results obtained using the renormalized image method with direct calculations using tracing of winding geodesics around the cone singularities. Examples demonstrate that the results coincide. We show that correlators in the geodesic approximation have a zone structure, which depends substantially on the particle mass and velocity.

Keywords: AdS/CFT correspondence, holographic duality, conical defect, thermalization

Funding Agency Grant Number
Russian Foundation for Basic Research 14-01-00707
Instituto Nazionale di Fisica Nucleare
Ministry of Education and Science of the Russian Federation MK-2510.2014.1
This research is supported by the Russian Foundation for Basic Research (Grant No. 14-01-00707). The research of D. S. Ageev is supported by the Grant Council of the President of Russia (Grant No. MK-2510.2014.1). The research of I. Ya. Aref'eva was supported in part by the INFN during the preparation of this work.

DOI: https://doi.org/10.4213/tmf9085

Full text: PDF file (1869 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2016, 188:1, 1038–1068

Bibliographic databases:

Received: 16.06.2015
Revised: 27.10.2015

Citation: D. S. Ageev, I. Ya. Aref'eva, M. D. Tikhanovskaya, “$(1+1)$-Correlators and moving massive defects”, TMF, 188:1 (2016), 85–120; Theoret. and Math. Phys., 188:1 (2016), 1038–1068

Citation in format AMSBIB
\by D.~S.~Ageev, I.~Ya.~Aref'eva, M.~D.~Tikhanovskaya
\paper $(1+1)$-Correlators and moving massive defects
\jour TMF
\yr 2016
\vol 188
\issue 1
\pages 85--120
\jour Theoret. and Math. Phys.
\yr 2016
\vol 188
\issue 1
\pages 1038--1068

Linking options:
  • http://mi.mathnet.ru/eng/tmf9085
  • https://doi.org/10.4213/tmf9085
  • http://mi.mathnet.ru/eng/tmf/v188/i1/p85

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. Ya. Aref'eva, M. A. Khramtsov, M. D. Tikhanovskaya, “Improved image method for a holographic description of conical defects”, Theoret. and Math. Phys., 189:2 (2016), 1660–1672  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. E. J. Lindgren, “Black hole formation from pointlike particles in three-dimensional anti–de Sitter space”, Class. Quantum Gravity, 33:14 (2016), 145009, 35 pp.  crossref  mathscinet  zmath  isi  scopus
    3. I. Ya. Aref'eva, M. A. Khramtsov, “AdS/CFT prescription for angle-deficit space and winding geodesics”, J. High Energy Phys., 2016, no. 4, 121, front matter+21 pp.  crossref  mathscinet  isi  scopus
    4. K. Alkalaev, V. Belavin, “From global to heavy-light: 5-point conformal blocks”, J. High Energy Phys., 2016, no. 3, 184  crossref  mathscinet  zmath  isi  scopus
    5. M. Khramtsov, “Holographic dictionary and defects in the bulk”, 19th International Seminar on High Energy Physics (QUARKS-2016), EPJ Web Conf., 125, ed. V. Andrianov, V. Matveev, V. Rubakov, V. Kim, A. Andrianov, M. Fitkevich, EDP Sciences, 2016, UNSP 05010  crossref  isi  scopus
    6. M. Tikhanovskaya, “Localized quench in 1+1 conformal field theory”, 19th International Seminar on High Energy Physics (QUARKS-2016), EPJ Web Conf., 125, ed. V. Andrianov, V. Matveev, V. Rubakov, V. Kim, A. Andrianov, M. Fitkevich, EDP Sciences, 2016, UNSP 05026  crossref  isi  scopus
    7. I. Ya. Aref'eva, M. A. Khramtsov, M. D. Tikhanovskaya, “Thermalization after holographic bilocal quench”, J. High Energy Phys., 2017, no. 9, 115  crossref  mathscinet  zmath  isi  scopus
    8. Ch.-B. Chen, W.-C. Gan, F.-W. Shu, B. Xiong, “Quantum information metric of conical defect”, Phys. Rev. D, 98:4 (2018), 046008  crossref  isi  scopus
    9. D. Ageev, I. Aref'eva, A. Bagrov, M. I. Katsnelson, “Holographic local quench and effective complexity”, J. High Energy Phys., 2018, no. 8, 071  crossref  isi  scopus
    10. D. S. Ageev, “Holographic complexity of local quench at finite temperature”, Phys. Rev. D, 100:12 (2019)  crossref  mathscinet  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:406
    Full text:71
    First page:12

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021