Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1998, Volume 116, Number 3, Pages 362–366 (Mi tmf909)  

This article is cited in 6 scientific papers (total in 6 papers)

A nonlinear identity for the scattering phase of integrable models

N. A. Slavnov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: The scattering phase of quantum integrable models is found from linear integral equations of a special type. Solutions of these equations satisfy some nonlinear identities, which, in particular, relate the values of the scattering phase at the boundaries of the Fermi sphere.

DOI: https://doi.org/10.4213/tmf909

Full text: PDF file (140 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1998, 116:3, 1021–1023

Bibliographic databases:

Received: 28.04.1998

Citation: N. A. Slavnov, “A nonlinear identity for the scattering phase of integrable models”, TMF, 116:3 (1998), 362–366; Theoret. and Math. Phys., 116:3 (1998), 1021–1023

Citation in format AMSBIB
\Bibitem{Sla98}
\by N.~A.~Slavnov
\paper A~nonlinear identity for the scattering phase of integrable models
\jour TMF
\yr 1998
\vol 116
\issue 3
\pages 362--366
\mathnet{http://mi.mathnet.ru/tmf909}
\crossref{https://doi.org/10.4213/tmf909}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1693877}
\zmath{https://zbmath.org/?q=an:0952.81061}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 116
\issue 3
\pages 1021--1023
\crossref{https://doi.org/10.1007/BF02557143}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000078007000004}


Linking options:
  • http://mi.mathnet.ru/eng/tmf909
  • https://doi.org/10.4213/tmf909
  • http://mi.mathnet.ru/eng/tmf/v116/i3/p362

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. A. Slavnov, “Integral equations for correlation functions of a quantum one-dimensional Bose gas”, Theoret. and Math. Phys., 121:1 (1999), 1358–1376  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Kitanine N., Kozlowski K.K., Maillet J.M., Slavnov N.A., Terras V., “The thermodynamic limit of particle-hole form factors in the massless XXZ Heisenberg chain”, J Stat Mech Theory Exp, 2011, P05028  crossref  isi  scopus  scopus  scopus
    3. Patu O.I. Kluemper A., “Correlation Lengths of the Repulsive One-Dimensional Bose Gas”, Phys. Rev. A, 88:3 (2013), 033623  crossref  adsnasa  isi  elib  scopus  scopus  scopus
    4. Kozlowski K.K., “Large-Distance and Long-Time Asymptotic Behavior of the Reduced Density Matrix in the Non-Linear Schrodinger Model”, Ann. Henri Poincare, 16:2 (2015), 437–534  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    5. Kozlowski K.K. Ragoucy E., “Asymptotic behaviour of two-point functions in multi-species models”, Nucl. Phys. B, 906 (2016), 241–288  crossref  mathscinet  zmath  isi  elib  scopus
    6. Campbell A.S., Gangardt D.M., “Mobile Impurities in Integrable Models”, SciPost Phys., 3:2 (2017), UNSP 015  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:226
    Full text:131
    References:40
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021