General information
Latest issue
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TMF, 2017, Volume 190, Number 1, Pages 58–77 (Mi tmf9144)  

This article is cited in 11 scientific papers (total in 11 papers)

Solving evolutionary-type differential equations and physical problems using the operator method

K. V. Zhukovsky

Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia

Abstract: We present a general operator method based on the advanced technique of the inverse derivative operator for solving a wide range of problems described by some classes of differential equations. We construct and use inverse differential operators to solve several differential equations. We obtain operator identities involving an inverse derivative operator, integral transformations, and generalized forms of orthogonal polynomials and special functions. We present examples of using the operator method to construct solutions of equations containing linear and quadratic forms of a pair of operators satisfying Heisenberg-type relations and solutions of various modifications of partial differential equations of the Fourier heat conduction type, Fokker–Planck type, Black–Scholes type, etc. We demonstrate using the operator technique to solve several physical problems related to the charge motion in quantum mechanics, heat propagation, and the dynamics of the beams in accelerators.

Keywords: inverse operator, exponential operator, inverse derivative, differential equation, Laguerre polynomial, Hermite polynomial, special function


Full text: PDF file (1762 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2017, 190:1, 52–68

Bibliographic databases:

Received: 31.12.2015
Revised: 08.02.2016

Citation: K. V. Zhukovsky, “Solving evolutionary-type differential equations and physical problems using the operator method”, TMF, 190:1 (2017), 58–77; Theoret. and Math. Phys., 190:1 (2017), 52–68

Citation in format AMSBIB
\by K.~V.~Zhukovsky
\paper Solving evolutionary-type differential equations and physical problems using the~operator method
\jour TMF
\yr 2017
\vol 190
\issue 1
\pages 58--77
\jour Theoret. and Math. Phys.
\yr 2017
\vol 190
\issue 1
\pages 52--68

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Zhukovsky K., “Exact Negative Solutions For Guyer-Krumhansl Type Equation and the Maximum Principle Violation”, Entropy, 19:9 (2017), 440  crossref  mathscinet  isi  scopus
    2. Denisov V.I. Sokolov V.A. Svertilov S.I., “Vacuum Nonlinear Electrodynamic Polarization Effects in Hard Emission of Pulsars and Magnetars”, J. Cosmol. Astropart. Phys., 2017, no. 9, 004  crossref  isi  scopus
    3. Van P., Berezovski A., Fulop T., Grof G., Kovacs R., Lovas A., Verhas J., “Guyer-Krumhansl-Type Heat Conduction At Room Temperature”, EPL, 118:5 (2017), 50005  crossref  isi  scopus
    4. K. Zhukovsky, “Exact harmonic solution to ballistic type heat propagation in thin films and wires”, Int. J. Heat Mass Transf., 120 (2018), 944–955  crossref  isi  scopus
    5. K. V. Zhukovsky, “A harmonic solution for the hyperbolic heat conduction equation and its relationship to the Guyer-Krumhansl equation”, Mosc. Univ. Phys. Bull., 73:1 (2018), 45–52  crossref  isi
    6. K. Zhukovsky, D. Oskolkov, N. Gubina, “Some exact solutions to non-Fourier heat equations with substantial derivative”, Axioms, 7:3 (2018), 48  crossref  mathscinet  isi  scopus
    7. M. E. Abishev, S. Toktarbay, N. A. Beissen, F. B. Belissarova, M. K. Khassanov, A. S. Kudussov, A. Zh. Abylayeva, “Effects of non-linear electrodynamics of vacuum in the magnetic quadrupole field of a pulsar”, Mon. Not. Roy. Astron. Soc., 481:1 (2018), 36–43  crossref  isi
    8. K. Zhukovsky, D. Oskolkov, “Exact harmonic solutions to Guyer-Krumhansl-type equation and application to heat transport in thin films”, Continuum Mech. Thermodyn., 30:6 (2018), 1207–1222  crossref  mathscinet  isi
    9. Sh. M. Nagiyev, A. I. Akhmedov, “Time evolution of quadratic quantum systems: Evolution operators, propagators, and invariants”, Theoret. and Math. Phys., 198:3 (2019), 392–411  mathnet  crossref  crossref  adsnasa  isi  elib
    10. Behr N., Dattoli G., Duchamp G.H.E., Licciardi S., Penson K.A., “Operational Methods in the Study of Sobolev-Jacobi Polynomials”, Mathematics, 7:2 (2019), 124  crossref  isi  scopus
    11. Zhukovsky K.V., “Exact Analytic Solution and Investigation of the Guyer-Krumhansl Heat Equation”, Russ. J. Math. Phys., 26:2 (2019), 237–254  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:265
    First page:37

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019