RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2017, Volume 191, Number 2, Pages 219–227 (Mi tmf9181)  

This article is cited in 4 scientific papers (total in 4 papers)

Cosmological models with homogeneous and isotropic spatial sections

M. O. Katanaevab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Kazan (Volga Region) Federal University, Kazan, Russia

Abstract: The assumption that the universe is homogeneous and isotropic is the basis for the majority of modern cosmological models. We give an example of a metric all of whose spatial sections are spaces of constant curvature but the space–time is nevertheless not homogeneous and isotropic as a whole. We give an equivalent definition of a homogeneous and isotropic universe in terms of embedded manifolds.

Keywords: homogeneous isotropic universe, cosmology.

DOI: https://doi.org/10.4213/tmf9181

Full text: PDF file (398 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2017, 191:2, 661–668

Bibliographic databases:

Document Type: Article
Received: 24.02.2016
Revised: 06.04.2016

Citation: M. O. Katanaev, “Cosmological models with homogeneous and isotropic spatial sections”, TMF, 191:2 (2017), 219–227; Theoret. and Math. Phys., 191:2 (2017), 661–668

Citation in format AMSBIB
\Bibitem{Kat17}
\by M.~O.~Katanaev
\paper Cosmological models with homogeneous and isotropic spatial sections
\jour TMF
\yr 2017
\vol 191
\issue 2
\pages 219--227
\mathnet{http://mi.mathnet.ru/tmf9181}
\crossref{https://doi.org/10.4213/tmf9181}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3659589}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...191..661K}
\elib{http://elibrary.ru/item.asp?id=29106650}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 191
\issue 2
\pages 661--668
\crossref{https://doi.org/10.1134/S0040577917050063}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000403012000006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020307465}


Linking options:
  • http://mi.mathnet.ru/eng/tmf9181
  • https://doi.org/10.4213/tmf9181
  • http://mi.mathnet.ru/eng/tmf/v191/i2/p219

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823–839  mathnet  crossref  crossref  adsnasa  isi  elib
    2. A. K. Gushchin, “A criterion for the existence of $L_p$ boundary values of solutions to an elliptic equation”, Proc. Steklov Inst. Math., 301 (2018), 44–64  mathnet  crossref  crossref  isi  elib  elib
    3. V. V. Zharinov, “Analysis in algebras and modules”, Proc. Steklov Inst. Math., 301 (2018), 98–108  mathnet  crossref  crossref  isi  elib  elib
    4. A. S. Trushechkin, “Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional”, Proc. Steklov Inst. Math., 301 (2018), 262–271  mathnet  crossref  crossref  isi  elib  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:215
    References:28
    First page:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019