RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2016, Volume 189, Number 2, Pages 256–278 (Mi tmf9210)  

This article is cited in 7 scientific papers (total in 7 papers)

Multiple commutation relations in the models with $\mathfrak gl(2|1)$ symmetry

N. A. Slavnov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: We consider quantum integrable models with the $\mathfrak gl(2|1)$ symmetry and derive a set of multiple commutation relations between the monodromy matrix elements. These multiple commutation relations allow obtaining different representations for Bethe vectors.

Keywords: Bethe ansatz, monodromy matrix, commutation relation

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.


DOI: https://doi.org/10.4213/tmf9210

Full text: PDF file (548 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2016, 189:2, 1624–1644

Bibliographic databases:

ArXiv: 1604.05343
Received: 18.04.2016

Citation: N. A. Slavnov, “Multiple commutation relations in the models with $\mathfrak gl(2|1)$ symmetry”, TMF, 189:2 (2016), 256–278; Theoret. and Math. Phys., 189:2 (2016), 1624–1644

Citation in format AMSBIB
\Bibitem{Sla16}
\by N.~A.~Slavnov
\paper Multiple commutation relations in the~models with $\mathfrak gl(2|1)$ symmetry
\jour TMF
\yr 2016
\vol 189
\issue 2
\pages 256--278
\mathnet{http://mi.mathnet.ru/tmf9210}
\crossref{https://doi.org/10.4213/tmf9210}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3589033}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...189.1624S}
\elib{http://elibrary.ru/item.asp?id=27485055}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 189
\issue 2
\pages 1624--1644
\crossref{https://doi.org/10.1134/S0040577916110076}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000389995500007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85002717868}


Linking options:
  • http://mi.mathnet.ru/eng/tmf9210
  • https://doi.org/10.4213/tmf9210
  • http://mi.mathnet.ru/eng/tmf/v189/i2/p256

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Related presentations:

    This publication is cited in the following articles:
    1. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{g}\mathfrak{l}(2|1)$ symmetry 1. Super-analog of Reshetikhin formula”, J. Phys. A-Math. Theor., 49:45 (2016), 454005, 28 pp.  crossref  mathscinet  isi  scopus
    2. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{g}\mathfrak{l}(2|1)$ symmetry 2. Determinant representation”, J. Phys. A-Math. Theor., 50:3 (2017), 034004  crossref  mathscinet  zmath  isi  elib  scopus
    3. N. Gromov, F. Levkovich-Maslyuk, G. Sizov, “New construction of eigenstates and separation of variables for $\mathrm{SU}(N)$ quantum spin chains”, J. High Energy Phys., 2017, no. 9, 111, front matter+39 pp.  crossref  mathscinet  zmath  isi  scopus
    4. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in the models with $\mathfrak{g}\mathfrak{l}(m|n)$ symmetry”, Nucl. Phys. B, 923 (2017), 277–311  crossref  zmath  isi  scopus
    5. N. Gromov, F. Levkovich-Maslyuk, “New compact construction of eigenstates for supersymmetric spin chains”, J. High Energy Phys., 2018, no. 9, 085  crossref  isi  scopus
    6. S. Belliard, N. A. Slavnov, B. Vallet, “Scalar product of twisted XXX modified Bethe vectors”, J. Stat. Mech.-Theory Exp., 2018, 093103  crossref  isi  scopus
    7. Yao Sh.-K. Liu P. Jia X.-Yu., “On Super Yangian Covariance of the Triple Product System”, Adv. Appl. Clifford Algebr., 29:1 (2019), UNSP 15  crossref  mathscinet  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:189
    References:24
    First page:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019