General information
Latest issue
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TMF, 2017, Volume 191, Number 3, Pages 369–388 (Mi tmf9216)  

This article is cited in 5 scientific papers (total in 5 papers)

Invariant manifolds and Lax pairs for integrable nonlinear chains

I. T. Habibullinab, A. R. Khakimovaab

a Institute of Mathematics with Computing Centre, Ufa Science Centre, RAS, Ufa, Russia
b Bashkir State University, Ufa, Russia

Abstract: We continue the previously started study of the development of a direct method for constructing the Lax pair for a given integrable equation. This approach does not require any addition assumptions about the properties of the equation. As one equation of the Lax pair, we take the linearization of the considered nonlinear equation, and the second equation of the pair is related to its generalized invariant manifold. The problem of seeking the second equation reduces to simple but rather cumbersome calculations and, as examples show, is effectively solvable. It is remarkable that the second equation of this pair allows easily finding a recursion operator describing the hierarchy of higher symmetries of the equation. At first glance, the Lax pairs thus obtained differ from usual ones in having a higher order or a higher matrix dimensionality. We show with examples that they reduce to the usual pairs by reducing their order. As an example, we consider an integrable double discrete system of exponential type and its higher symmetry for which we give the Lax pair and construct the conservation laws.

Keywords: Lax pair, integrable chain, higher symmetry, invariant manifold, recursion operator.

Funding Agency Grant Number
Russian Science Foundation 15-11-20007
This research is supported by a grant from the Russian Science Foundation (Project No. 15-11-20007).

Author to whom correspondence should be addressed


Full text: PDF file (539 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2017, 191:3, 793–810

Bibliographic databases:

MSC: 35Q53
Received: 26.04.2016
Revised: 06.02.2017

Citation: I. T. Habibullin, A. R. Khakimova, “Invariant manifolds and Lax pairs for integrable nonlinear chains”, TMF, 191:3 (2017), 369–388; Theoret. and Math. Phys., 191:3 (2017), 793–810

Citation in format AMSBIB
\by I.~T.~Habibullin, A.~R.~Khakimova
\paper Invariant manifolds and Lax pairs for integrable nonlinear chains
\jour TMF
\yr 2017
\vol 191
\issue 3
\pages 369--388
\jour Theoret. and Math. Phys.
\yr 2017
\vol 191
\issue 3
\pages 793--810

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Habibullin I.T. Khakimova A.R., “On a Method For Constructing the Lax pairs For Integrable Models Via a Quadratic Ansatz”, J. Phys. A-Math. Theor., 50:30 (2017), 305206  crossref  mathscinet  zmath  isi  scopus
    2. I. T. Habibullin, A. R. Khakimova, “A direct algorithm for constructing recursion operators and Lax pairs for integrable models”, Theoret. and Math. Phys., 196:2 (2018), 1200–1216  mathnet  crossref  crossref  adsnasa  isi  elib
    3. I. T. Habibullin, A. R. Khakimova, “On the recursion operators for integrable equations”, J. Phys. A-Math. Theor., 51:42 (2018), 425202  crossref  isi  scopus
    4. A. R. Khakimova, “On description of generalized invariant manifolds for nonlinear equations”, Ufa Math. J., 10:3 (2018), 106–116  mathnet  crossref  isi
    5. I. T. Khabibullin, A. R. Khakimova, “Invariantnye mnogoobraziya integriruemykh uravnenii giperbolicheskogo tipa i ikh prilozheniya”, Kompleksnyi analiz. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 162, VINITI RAN, M., 2019, 136–150  mathnet
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:275
    First page:27

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020