RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2016, Volume 189, Number 2, Pages 296–311 (Mi tmf9231)  

This article is cited in 5 scientific papers (total in 5 papers)

Improved image method for a holographic description of conical defects

I. Ya. Aref'eva, M. A. Khramtsov, M. D. Tikhanovskaya

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: The geodesics prescription in the holographic approach in the Lorentzian signature is applicable only for geodesics connecting spacelike-separated points at the boundary because there are no timelike geodesics that reach the boundary. Also, generally speaking, there is no direct analytic Euclidean continuation for a general background, such as a moving particle in the AdS space. We propose an improved geodesic image method for two-point Lorentzian correlators that is applicable for arbitrary time intervals when the space–time is deformed by point particles. We show that such a prescription agrees with the case where the analytic continuation exists and also with the previously used prescription for quasigeodesics. We also discuss some other applications of the improved image method: holographic entanglement entropy and multiple particles in the AdS$_3$ space.

Keywords: AdS/CFT correspondence, holography, geodesic approximation, conical defect

Funding Agency Grant Number
Russian Science Foundation 14-11-00687
Section 3 was done by M. A. Khramtsov, and the remaining sections were done by I. Ya. Aref'eva and M. D. Tikhanovskaya. The research of I. Ya. Aref'eva and M. D. Tikhanovskaya was performed at the Steklov Mathematical Institute of Russian Academy of Sciences and supported by a grant from the Russian Science Foundation (Project No. 14-11-00687).


DOI: https://doi.org/10.4213/tmf9231

Full text: PDF file (1052 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2016, 189:2, 1660–1672

Bibliographic databases:

ArXiv: 1604.08905
Document Type: Article
Received: 17.05.2016

Citation: I. Ya. Aref'eva, M. A. Khramtsov, M. D. Tikhanovskaya, “Improved image method for a holographic description of conical defects”, TMF, 189:2 (2016), 296–311; Theoret. and Math. Phys., 189:2 (2016), 1660–1672

Citation in format AMSBIB
\Bibitem{AreKhrTik16}
\by I.~Ya.~Aref'eva, M.~A.~Khramtsov, M.~D.~Tikhanovskaya
\paper Improved image method for a~holographic description of conical defects
\jour TMF
\yr 2016
\vol 189
\issue 2
\pages 296--311
\mathnet{http://mi.mathnet.ru/tmf9231}
\crossref{https://doi.org/10.4213/tmf9231}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3589036}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...189.1660A}
\elib{http://elibrary.ru/item.asp?id=27485059}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 189
\issue 2
\pages 1660--1672
\crossref{https://doi.org/10.1134/S0040577916110106}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000389995500010}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85002881421}


Linking options:
  • http://mi.mathnet.ru/eng/tmf9231
  • https://doi.org/10.4213/tmf9231
  • http://mi.mathnet.ru/eng/tmf/v189/i2/p296

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. S. Ageev, I. Ya. Aref'eva, “Holographic instant conformal symmetry breaking by colliding conical defects”, Theoret. and Math. Phys., 189:3 (2016), 1742–1754  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. M. Tikhanovskaya, “Localized quench in 1+1 conformal field theory”, 19th International Seminar on High Energy Physics (QUARKS-2016), EPJ Web Conf., 125, ed. V. Andrianov, V. Matveev, V. Rubakov, V. Kim, A. Andrianov, M. Fitkevich, EDP Sciences, 2016, UNSP 05026  crossref  isi  scopus
    3. J. C. Cresswell, A. W. Peet, “Kinematic space for conical defects”, J. High Energy Phys., 2017, no. 11, 155  crossref  mathscinet  zmath  isi  scopus
    4. I. Ya. Aref'eva, M. A. Khramtsov, M. D. Tikhanovskaya, “Thermalization after holographic bilocal quench”, J. High Energy Phys., 2017, no. 9, 115  crossref  mathscinet  zmath  isi  scopus
    5. M. Cadoni, P. Jain, “How is the presence of horizons and localized matter encoded in the entanglement entropy?”, Int. J. Mod. Phys. A, 32:15 (2017), 1750083  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:216
    References:27
    First page:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019