RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2017, Volume 192, Number 2, Pages 207–220 (Mi tmf9281)  

This article is cited in 1 scientific paper (total in 1 paper)

The generating function of bivariate Chebyshev polynomials associated with the Lie algebra $G_2$

E. V. Damaskinskyab, M. A. Sokolovc

a Military Institute (Engineering-Technical), Military Academy of Materiel and Technical Security, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
c Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia

Abstract: We construct the generating function of the second-kind bivariate Chebyshev polynomials associated with the simple Lie algebra $G_2$ using a previously proposed method.

Keywords: bivariate Chebyshev polynomial, generating function.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-01-03148
This research is supported by the Russian Foundation for Basic Research (Grant No. 15-01-03148).


DOI: https://doi.org/10.4213/tmf9281

Full text: PDF file (517 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2017, 192:2, 1115–1128

Bibliographic databases:

Received: 03.10.2016
Revised: 05.01.2017

Citation: E. V. Damaskinsky, M. A. Sokolov, “The generating function of bivariate Chebyshev polynomials associated with the Lie algebra $G_2$”, TMF, 192:2 (2017), 207–220; Theoret. and Math. Phys., 192:2 (2017), 1115–1128

Citation in format AMSBIB
\Bibitem{DamSok17}
\by E.~V.~Damaskinsky, M.~A.~Sokolov
\paper The~generating function of bivariate Chebyshev polynomials associated
with the~Lie algebra $G_2$
\jour TMF
\yr 2017
\vol 192
\issue 2
\pages 207--220
\mathnet{http://mi.mathnet.ru/tmf9281}
\crossref{https://doi.org/10.4213/tmf9281}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3682810}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...192.1115D}
\elib{http://elibrary.ru/item.asp?id=29833735}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 192
\issue 2
\pages 1115--1128
\crossref{https://doi.org/10.1134/S0040577917080025}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000409295000002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85028969457}


Linking options:
  • http://mi.mathnet.ru/eng/tmf9281
  • https://doi.org/10.4213/tmf9281
  • http://mi.mathnet.ru/eng/tmf/v192/i2/p207

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. T. Czyzycki, J. Hrivnak, J. Patera, “Generating functions for orthogonal polynomials of $A_2$, $C_2$ and $G_2$”, Symmetry-Basel, 10:8 (2018), 354  crossref  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:231
    References:30
    First page:23

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020