Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2017, Volume 192, Number 3, Pages 395–443 (Mi tmf9320)  

This article is cited in 4 scientific papers (total in 4 papers)

Hurwitz numbers and products of random matrices

A. Yu. Orlovab

a Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
b National Research University "Higher School of Economics", Moscow, Russia

Abstract: We study multimatrix models, which may be viewed as integrals of products of tau functions depending on the eigenvalues of products of random matrices. We consider tau functions of the two-component Kadomtsev–Petviashvili (KP) hierarchy (semi-infinite relativistic Toda lattice) and of the B-type KP (BKP) hierarchy introduced by Kac and van de Leur. Such integrals are sometimes tau functions themselves. We consider models that generate Hurwitz numbers $H^{\mathrm E,\mathrm F}$, where $\mathrm E$ is the Euler characteristic of the base surface and $\mathrm F$ is the number of branch points. We show that in the case where the integrands contain the product of $n>2$ matrices, the integral generates Hurwitz numbers with $\mathrm E\le2$ and $\mathrm F\le n+2$. Both the numbers $\mathrm E$ and $\mathrm F$ depend both on $n$ and on the order of the factors in the matrix product. The Euler characteristic $\mathrm E$ can be either an even or an odd number, i.e., it can match both orientable and nonorientable (Klein) base surfaces depending on the presence of the tau function of the BKP hierarchy in the integrand. We study two cases, the products of complex and the products of unitary matrices.

Keywords: Hurwitz number, Klein surface, Schur polynomial, characters of a symmetric group, hypergeometric function, random partition, random matrix, matrix model, products of random matrices, tau function, two-component Kadomtsev–Petviashvili hierarchy, Toda lattice, B-type Kadomtsev–Petviashvili hierarchy (Kac–van de Leur).

DOI: https://doi.org/10.4213/tmf9320

Full text: PDF file (894 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2017, 192:3, 1282–1323

Bibliographic databases:

Received: 16.12.2016

Citation: A. Yu. Orlov, “Hurwitz numbers and products of random matrices”, TMF, 192:3 (2017), 395–443; Theoret. and Math. Phys., 192:3 (2017), 1282–1323

Citation in format AMSBIB
\Bibitem{Orl17}
\by A.~Yu.~Orlov
\paper Hurwitz numbers and products of random matrices
\jour TMF
\yr 2017
\vol 192
\issue 3
\pages 395--443
\mathnet{http://mi.mathnet.ru/tmf9320}
\crossref{https://doi.org/10.4213/tmf9320}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3693587}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...192.1282O}
\elib{https://elibrary.ru/item.asp?id=29887811}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 192
\issue 3
\pages 1282--1323
\crossref{https://doi.org/10.1134/S0040577917090033}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000412094700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030160121}


Linking options:
  • http://mi.mathnet.ru/eng/tmf9320
  • https://doi.org/10.4213/tmf9320
  • http://mi.mathnet.ru/eng/tmf/v192/i3/p395

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Alexandrov A. Chapuy G. Eynard B. Harnad J., “Weighted Hurwitz Numbers and Topological Recursion”, Commun. Math. Phys.  crossref  mathscinet  isi
    2. J. W. van de Leur, A. Yu. Orlov, “Character expansion of matrix integrals”, J. Phys. A-Math. Theor., 51:2 (2018), 025208  crossref  mathscinet  zmath  isi  scopus
    3. S. M. Natanzon, A. Yu. Orlov, “Hurwitz numbers from Feynman diagrams”, Theoret. and Math. Phys., 204:3 (2020), 1166–1194  mathnet  crossref  crossref  isi  elib
    4. N. Amburg, A. Orlov, D. Vasiliev, “On products of random matrices”, Entropy, 22:9 (2020), 972  crossref  mathscinet  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:270
    Full text:46
    References:32
    First page:20

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021