RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2018, Volume 195, Number 2, Pages 313–328 (Mi tmf9413)  

This article is cited in 1 scientific paper (total in 1 paper)

Dynamical symmetry breaking in geometrodynamics

A. Garat

Physics Institute, Department of Sciences, University of the Republic, Montevideo, Uruguay

Abstract: Using a first-order perturbative formulation, we analyze the local loss of symmetry when a source of electromagnetic and gravitational fields interacts with an agent that perturbs the original geometry associated with the source. We had proved that the local gauge groups are isomorphic to local groups of transformations of special tetrads. These tetrads define two orthogonal planes at every point in space–time such that every vector in these local planes is an eigenvector of the Einstein–Maxwell stress–energy tensor. Because the local gauge symmetry in Abelian or even non-Abelian field structures in four-dimensional Lorentzian space–times is manifested by the existence of local planes of symmetry, the loss of symmetry is manifested by a tilt of these planes under the influence of an external agent. In this strict sense, the original local symmetry is lost. We thus prove that the new planes at the same point after the tilting generated by the perturbation correspond to a new symmetry. Our goal here is to show that the geometric manifestation of local gauge symmetries is dynamical. Although the original local symmetries are lost, new symmetries arise. This is evidence for a dynamical evolution of local symmetries. We formulate a new theorem on dynamical symmetry evolution. The proposed new classical model can be useful for better understanding anomalies in quantum field theories.

Keywords: new group, new group isomorphism, Einstein–Maxwell gauge symmetry, perturbative formulation, dynamical symmetry breaking.

DOI: https://doi.org/10.4213/tmf9413

Full text: PDF file (463 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2018, 195:2, 764–776

Bibliographic databases:

Received: 22.05.2017

Citation: A. Garat, “Dynamical symmetry breaking in geometrodynamics”, TMF, 195:2 (2018), 313–328; Theoret. and Math. Phys., 195:2 (2018), 764–776

Citation in format AMSBIB
\Bibitem{Gar18}
\by A.~Garat
\paper Dynamical symmetry breaking in geometrodynamics
\jour TMF
\yr 2018
\vol 195
\issue 2
\pages 313--328
\mathnet{http://mi.mathnet.ru/tmf9413}
\crossref{https://doi.org/10.4213/tmf9413}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...195..764G}
\elib{http://elibrary.ru/item.asp?id=32823077}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 195
\issue 2
\pages 764--776
\crossref{https://doi.org/10.1134/S0040577918050100}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000434491300010}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048268601}


Linking options:
  • http://mi.mathnet.ru/eng/tmf9413
  • https://doi.org/10.4213/tmf9413
  • http://mi.mathnet.ru/eng/tmf/v195/i2/p313

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Garat A., “Tetrads in Low-Energy Weak Interactions”, Int. J. Mod. Phys. A, 33:33 (2018), 1850197  crossref  zmath  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:683
    References:27
    First page:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020