RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2018, Volume 197, Number 1, Pages 124–137 (Mi tmf9473)  

Classification of the associativity equations with a first-order Hamiltonian operator

O. I. Mokhov, N. A. Pavlenko

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Abstract: We study the Hamiltonian geometry of systems of hydrodynamic type that are equivalent to the associativity equations in the case of three primary fields and obtain the complete classification of the associativity equations with respect to the existence of a first-order Dubrovin–Novikov Hamiltonian structure.

Keywords: associativity equations, nondiagonalizable system of hydrodynamic type, Dubrovin–Novikov Hamiltonian operator, flat metric, Haantjes tensor.

Funding Agency Grant Number
Russian Science Foundation 16-11-10260
This research is supported by a grant from the Russian Science Foundation (Project No. 16-11-10260).


DOI: https://doi.org/10.4213/tmf9473

Full text: PDF file (448 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2018, 197:1, 1501–1513

Bibliographic databases:

Received: 30.09.2017

Citation: O. I. Mokhov, N. A. Pavlenko, “Classification of the associativity equations with a first-order Hamiltonian operator”, TMF, 197:1 (2018), 124–137; Theoret. and Math. Phys., 197:1 (2018), 1501–1513

Citation in format AMSBIB
\Bibitem{MokPav18}
\by O.~I.~Mokhov, N.~A.~Pavlenko
\paper Classification of the~associativity equations with a~first-order Hamiltonian operator
\jour TMF
\yr 2018
\vol 197
\issue 1
\pages 124--137
\mathnet{http://mi.mathnet.ru/tmf9473}
\crossref{https://doi.org/10.4213/tmf9473}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...197.1501M}
\elib{http://elibrary.ru/item.asp?id=35601333}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 197
\issue 1
\pages 1501--1513
\crossref{https://doi.org/10.1134/S0040577918100070}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000449768100007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056136385}


Linking options:
  • http://mi.mathnet.ru/eng/tmf9473
  • https://doi.org/10.4213/tmf9473
  • http://mi.mathnet.ru/eng/tmf/v197/i1/p124

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:128
    References:14
    First page:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019