RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2018, Volume 197, Number 1, Pages 24–44 (Mi tmf9506)  

Nonlocal reductions of the Ablowitz–Ladik equation

G. G. Grahovski, A. Mohammed, H. Susanto

Department of Mathematical Sciences, University of Essex, Colchester, UK

Abstract: Our purpose is to develop the inverse scattering transform for the nonlocal semidiscrete nonlinear Schrödinger equation (called the Ablowitz–Ladik equation) with $\mathcal{PT}$ symmetry. This includes the eigenfunctions (Jost solutions) of the associated Lax pair, the scattering data, and the fundamental analytic solutions. In addition, we study the spectral properties of the associated discrete Lax operator. Based on the formulated (additive) Riemann–Hilbert problem, we derive the one- and two-soliton solutions for the nonlocal Ablowitz–Ladik equation. Finally, we prove the completeness relation for the associated Jost solutions. Based on this, we derive the expansion formula over the complete set of Jost solutions. This allows interpreting the inverse scattering transform as a generalized Fourier transform.

Keywords: integrable system, soliton, PT symmetry, nonlocal reduction, Riemann–Hilbert problem.
Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/tmf9506

Full text: PDF file (555 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2018, 197:1, 1412–1429

Bibliographic databases:

Received: 07.11.2017

Citation: G. G. Grahovski, A. Mohammed, H. Susanto, “Nonlocal reductions of the Ablowitz–Ladik equation”, TMF, 197:1 (2018), 24–44; Theoret. and Math. Phys., 197:1 (2018), 1412–1429

Citation in format AMSBIB
\Bibitem{GraMohSus18}
\by G.~G.~Grahovski, A.~Mohammed, H.~Susanto
\paper Nonlocal reductions of the~Ablowitz--Ladik equation
\jour TMF
\yr 2018
\vol 197
\issue 1
\pages 24--44
\mathnet{http://mi.mathnet.ru/tmf9506}
\crossref{https://doi.org/10.4213/tmf9506}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...197.1412G}
\elib{http://elibrary.ru/item.asp?id=35601316}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 197
\issue 1
\pages 1412--1429
\crossref{https://doi.org/10.1134/S0040577918100021}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000449768100002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056130835}


Linking options:
  • http://mi.mathnet.ru/eng/tmf9506
  • https://doi.org/10.4213/tmf9506
  • http://mi.mathnet.ru/eng/tmf/v197/i1/p24

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:115
    References:20
    First page:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019