RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2018, Volume 196, Number 3, Pages 419–433 (Mi tmf9523)  

Conformally invariant elliptic Liouville equation and its symmetry-preserving discretization

D. Leviab, L. Martinacd, P. Winternitzef

a Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Roma, Italy
b Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Roma, Italy
c Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, Lecce, Italy
d Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
e Département de Mathématiques et de Statistique, Université de Montréal, Montréal (QC), Canada
f Centre de Recherches Mathématiques, Université de Montréal, Montréal (QC), Canada

Abstract: The symmetry algebra of the real elliptic Liouville equation is an infinite-dimensional loop algebra with the simple Lie algebra $o(3,1)$ as its maximal finite-dimensional subalgebra. The entire algebra generates the conformal group of the Euclidean plane $E_2$. This infinite-dimensional algebra distinguishes the elliptic Liouville equation from the hyperbolic one with its symmetry algebra that is the direct sum of two Virasoro algebras. Following a previously developed discretization procedure, we present a difference scheme that is invariant under the group $O(3,1)$ and has the elliptic Liouville equation in polar coordinates as its continuous limit. The lattice is a solution of an equation invariant under $O(3,1)$ and is itself invariant under a subgroup of $O(3,1)$, namely, the $O(2)$ rotations of the Euclidean plane.

Keywords: Lie group, partial differential equation, discretization procedure.

Funding Agency Grant Number
Italian Ministry of Education, University and Research 2010 PRIN
Instituto Nazionale di Fisica Nucleare IS-CSN4
Natural Sciences and Engineering Research Council of Canada (NSERC)
The research of D. Levi and L. Martina was supported in part by the Italian Ministry of Education and Research, 2010 PRIN “Continuous and discrete nonlinear integrable evolutions: From water waves to symplectic maps" and by INFN IS-CSN4 "Mathematical Methods of Nonlinear Physics.”
The research of P. Winternitz is supported in part by an NSERC discovery grant.

Author to whom correspondence should be addressed

DOI: https://doi.org/10.4213/tmf9523

Full text: PDF file (458 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2018, 196:3, 1307–1319

Bibliographic databases:

MSC: 22E60, 35J15, 39A20
Received: 20.12.2017

Citation: D. Levi, L. Martina, P. Winternitz, “Conformally invariant elliptic Liouville equation and its symmetry-preserving discretization”, TMF, 196:3 (2018), 419–433; Theoret. and Math. Phys., 196:3 (2018), 1307–1319

Citation in format AMSBIB
\Bibitem{LevMarWin18}
\by D.~Levi, L.~Martina, P.~Winternitz
\paper Conformally invariant elliptic Liouville equation and its symmetry-preserving discretization
\jour TMF
\yr 2018
\vol 196
\issue 3
\pages 419--433
\mathnet{http://mi.mathnet.ru/tmf9523}
\crossref{https://doi.org/10.4213/tmf9523}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...196.1307L}
\elib{http://elibrary.ru/item.asp?id=35410240}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 196
\issue 3
\pages 1307--1319
\crossref{https://doi.org/10.1134/S0040577918090052}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000447277900005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054702972}


Linking options:
  • http://mi.mathnet.ru/eng/tmf9523
  • https://doi.org/10.4213/tmf9523
  • http://mi.mathnet.ru/eng/tmf/v196/i3/p419

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:119
    References:21
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020