RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2019, Volume 198, Number 1, Pages 162–174 (Mi tmf9551)  

Construction of the Gelfand–Tsetlin basis for unitary principal series representations of the algebra $sl_n(\mathbb C)$

P. A. Valinevich

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: We consider infinite-dimensional unitary principal series representations of the algebra $sl_n(\mathbb C)$, implemented on the space of functions of $n(n{-}1)/2$ complex variables. For such representations, the elements of the Gelfand–Tsetlin basis are defined as the eigenfunctions of a certain system of quantum minors. The parameters of these functions, in contrast to the finite-dimensional case, take a continuous series of values. We obtain explicit formulas that allow constructing these functions recursively in the rank of the algebra $n$. The main construction elements are operators intertwining equivalent representations and also a group operator of a special type. We demonstrate how the recurrence relations work in the case of small ranks.

Keywords: Gelfand–Tsetlin basis, intertwining operator, unitary principal series representation.

Funding Agency Grant Number
Russian Science Foundation 14-11-00598
This research is supported by a grant from the Russian Science Foundation (Project No. 14-11-00598).


DOI: https://doi.org/10.4213/tmf9551

Full text: PDF file (434 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2019, 198:1, 145–155

Bibliographic databases:

Received: 19.02.2018
Revised: 19.02.2018

Citation: P. A. Valinevich, “Construction of the Gelfand–Tsetlin basis for unitary principal series representations of the algebra $sl_n(\mathbb C)$”, TMF, 198:1 (2019), 162–174; Theoret. and Math. Phys., 198:1 (2019), 145–155

Citation in format AMSBIB
\Bibitem{Val19}
\by P.~A.~Valinevich
\paper Construction of the~Gelfand--Tsetlin basis for unitary principal
series representations of the~algebra $sl_n(\mathbb C)$
\jour TMF
\yr 2019
\vol 198
\issue 1
\pages 162--174
\mathnet{http://mi.mathnet.ru/tmf9551}
\crossref{https://doi.org/10.4213/tmf9551}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...198..145V}
\elib{http://elibrary.ru/item.asp?id=36603944}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 198
\issue 1
\pages 145--155
\crossref{https://doi.org/10.1134/S0040577919010100}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000464906700010}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065229767}


Linking options:
  • http://mi.mathnet.ru/eng/tmf9551
  • https://doi.org/10.4213/tmf9551
  • http://mi.mathnet.ru/eng/tmf/v198/i1/p162

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:93
    References:13
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020