RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2018, Volume 197, Number 3, Pages 385–396 (Mi tmf9560)  

The topology of isoenergetic surfaces for the Borisov–Mamaev–Sokolov integrable case on the Lie algebra $so(3,1)$

R. Akbarzadeh

School of Mathematics, Institute for Research in Fundamental Sciences, Tehran, Iran

Abstract: We describe the topology of isoenergetic surfaces for an integrable system on the Lie algebra $so(3,1)$ and the critical points of the Hamiltonian for different parameter values. We construct bifurcation values of the Hamiltonian.

Keywords: topology, integrable Hamiltonian system, isoenergetic surface, critical set, bifurcation diagram.

Funding Agency Grant Number
School of Mathematics, Institute for Research in Fundamental Sciences 96510037
This research was supported in part by the Institute for Research in Fundamental Sciences (IPM Grant No. 96510037).


DOI: https://doi.org/10.4213/tmf9560

Full text: PDF file (729 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2018, 197:3, 1727–1736

Bibliographic databases:

MSC: Primary 37J35, 70E40; Secondary 70H06.
Received: 03.03.2018

Citation: R. Akbarzadeh, “The topology of isoenergetic surfaces for the Borisov–Mamaev–Sokolov integrable case on the Lie algebra $so(3,1)$”, TMF, 197:3 (2018), 385–396; Theoret. and Math. Phys., 197:3 (2018), 1727–1736

Citation in format AMSBIB
\Bibitem{Akb18}
\by R.~Akbarzadeh
\paper The~topology of isoenergetic surfaces for the~Borisov--Mamaev--Sokolov integrable case on the~Lie algebra $so(3,1)$
\jour TMF
\yr 2018
\vol 197
\issue 3
\pages 385--396
\mathnet{http://mi.mathnet.ru/tmf9560}
\crossref{https://doi.org/10.4213/tmf9560}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...197.1727A}
\elib{http://elibrary.ru/item.asp?id=36448168}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 197
\issue 3
\pages 1727--1736
\crossref{https://doi.org/10.1134/S0040577918120048}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000455189700004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059784529}


Linking options:
  • http://mi.mathnet.ru/eng/tmf9560
  • https://doi.org/10.4213/tmf9560
  • http://mi.mathnet.ru/eng/tmf/v197/i3/p385

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:154
    References:10
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020