Teoreticheskaya i Matematicheskaya Fizika
General information
Latest issue
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TMF, 2019, Volume 201, Number 1, Pages 17–36 (Mi tmf9731)  

This article is cited in 1 scientific paper (total in 1 paper)

Solution space monodromy of a special double confluent Heun equation and its applications

S. I. Tertychnyi

All-Russian Scientific Research Institute of Physical-Technical and Radiotechnical Measurements, Mendeleevo, Moscow Oblast, Russia

Abstract: We consider three linear operators determining automorphisms of the solution space of a special double confluent Heun equation of positive integer order ($\mathcal{L}$-operators). We propose a new method for describing properties of the solution space of this equation based on using eigenfunctions of one of the $\mathcal{L}$-operators, called the universal $\mathcal{L}$-operator. We construct composition laws for $\mathcal{L}$-operators and establish their relation to the monodromy transformation of the solution space of the special double confluent Heun equation. We find four functionals quadratic in eigenfunctions of the universal automorphism; they have a property with respect to the considered equation analogous to the property of the first integral. Based on them, we construct matrix representations of the $\mathcal{L}$-operators and also the monodromy operator. We give a method for extending solutions of the special double confluent Heun equation from the subset $\operatorname{Re} z>0$ of a complex plane to a maximum domain on which the solution exists. As an example of its application to the RSJ model theory of overdamped Josephson junctions, we give the explicit form of the transformation of the phase difference function induced by the monodromy of the solution space of the special double confluent Heun equation and propose a way to continue this function from a half-period interval to any given interval in the domain of the function using only algebraic transformations.

Keywords: double confluent Heun equation, solution space automorphism, monodromy, composition law, matrix representation, solution continuation, RSJ model of Josephson junction.

Funding Agency Grant Number
Russian Foundation for Basic Research 17-01-00192
This research is supported in part by the Russian Foundation for Basic Research (Grant No. 17-01-00192).

DOI: https://doi.org/10.4213/tmf9731

Full text: PDF file (609 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2019, 201:1, 1426–1441

Bibliographic databases:

PACS: 74.50.+r
MSC: 33E30, 33C47, 34A05, 34A25, 34M35
Received: 12.04.2019
Revised: 20.05.2019

Citation: S. I. Tertychnyi, “Solution space monodromy of a special double confluent Heun equation and its applications”, TMF, 201:1 (2019), 17–36; Theoret. and Math. Phys., 201:1 (2019), 1426–1441

Citation in format AMSBIB
\by S.~I.~Tertychnyi
\paper Solution space monodromy of a~special double confluent Heun equation and its applications
\jour TMF
\yr 2019
\vol 201
\issue 1
\pages 17--36
\jour Theoret. and Math. Phys.
\yr 2019
\vol 201
\issue 1
\pages 1426--1441

Linking options:
  • http://mi.mathnet.ru/eng/tmf9731
  • https://doi.org/10.4213/tmf9731
  • http://mi.mathnet.ru/eng/tmf/v201/i1/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. M. Buchstaber, S. I. Tertychnyi, “Group algebras acting on the space of solutions of a special double confluent Heun equation”, Theoret. and Math. Phys., 204:2 (2020), 967–983  mathnet  crossref  crossref  mathscinet  isi  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:162
    First page:11

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021