Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2020, Volume 204, Number 3, Pages 436–444 (Mi tmf9810)  

Multiplicative dynamical systems in terms of the induced dynamics

A. K. Pogrebkovab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Skolkovo Institute of Science and Technology, Moscow, Russia

Abstract: We realize an example of induced dynamics using new multiplicative determinant relations whose roots give the particle positions. We present both a general scheme for describing completely integrable dynamical systems parameterized by an arbitrary $N\times N$ matrix of momenta and an explicit model that interpolates between the Calogero–Moser and Ruijsenaars–Schneider hyperbolic systems. We consider some special cases of this model in detail.

Keywords: induced dynamics, completely integrable system.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-01-00273
This research is supported by the Russian Foundation for Basic Research (Grant No. 18-01-00273).


DOI: https://doi.org/10.4213/tmf9810

Full text: PDF file (348 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2020, 204:3, 1201–1208

Bibliographic databases:

MSC: 35Q51, 35Q53, 37J35
Received: 31.08.2019
Revised: 25.03.2020

Citation: A. K. Pogrebkov, “Multiplicative dynamical systems in terms of the induced dynamics”, TMF, 204:3 (2020), 436–444; Theoret. and Math. Phys., 204:3 (2020), 1201–1208

Citation in format AMSBIB
\Bibitem{Pog20}
\by A.~K.~Pogrebkov
\paper Multiplicative dynamical systems in terms of the~induced dynamics
\jour TMF
\yr 2020
\vol 204
\issue 3
\pages 436--444
\mathnet{http://mi.mathnet.ru/tmf9810}
\crossref{https://doi.org/10.4213/tmf9810}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4153750}
\elib{https://elibrary.ru/item.asp?id=45269493}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 204
\issue 3
\pages 1201--1208
\crossref{https://doi.org/10.1134/S0040577920090081}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000572663400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85091415021}


Linking options:
  • http://mi.mathnet.ru/eng/tmf9810
  • https://doi.org/10.4213/tmf9810
  • http://mi.mathnet.ru/eng/tmf/v204/i3/p436

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:85
    References:9
    First page:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021