Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2021, Volume 206, Number 3, Pages 295–338 (Mi tmf9834)  

WKB expansion for a Yang–Yang generating function and the Bergman tau function

M. Bertolaab, D. A. Korotkina

a Concordia University, Department of Mathematics and Statistics, Montréal, Québec, Canada
b International School for Advanced Studies (SISSA), Area of Mathematics, Trieste, Italy

Abstract: We study symplectic properties of the monodromy map of second-order equations on a Riemann surface whose potential is meromorphic with double poles. We show that the Poisson bracket defined in terms of periods of the meromorphic quadratic differential implies the Goldman Poisson structure on the monodromy manifold. We apply these results to a WKB analysis of this equation and show that the leading term in the WKB expansion of the generating function of the monodromy symplectomorphism (the Yang–Yang function introduced by Nekrasov, Rosly, and Shatashvili) is determined by the Bergman tau function on the moduli space of meromorphic quadratic differentials.

Keywords: Riemann surface, monodromy map, symplectic map generating function, tau function, Goldman bracket.

Funding Agency Grant Number
Natural Sciences and Engineering Research Council of Canada (NSERC) RGPIN-2016-06660
RGPIN/3827-2015
National Science Foundation DMS-1440140
Istituto Nazionale di Alta Matematica "Francesco Severi"
This research was supported by the National Science Foundation (Grant No. DMS-1440140) while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2019 semester Holomorphic Differentials in Mathematics and Physics. The research that led to the present paper was supported in part by a grant of the Gruppo Nazionale per la Fisica Matematica (GNFM), INdAM.
The research of M. Bertola was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC Grant No. RGPIN-2016-06660).
The research of D. A. Korotkin was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC Grant No. RGPIN/3827-2015).


DOI: https://doi.org/10.4213/tmf9834

Full text: PDF file (1132 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2021, 206:3, 258–295

Bibliographic databases:

Received: 17.10.2019
Revised: 02.12.2020

Citation: M. Bertola, D. A. Korotkin, “WKB expansion for a Yang–Yang generating function and the Bergman tau function”, TMF, 206:3 (2021), 295–338; Theoret. and Math. Phys., 206:3 (2021), 258–295

Citation in format AMSBIB
\Bibitem{BerKor21}
\by M.~Bertola, D.~A.~Korotkin
\paper WKB expansion for a~Yang--Yang generating function and the~Bergman tau function
\jour TMF
\yr 2021
\vol 206
\issue 3
\pages 295--338
\mathnet{http://mi.mathnet.ru/tmf9834}
\crossref{https://doi.org/10.4213/tmf9834}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4224012}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 206
\issue 3
\pages 258--295
\crossref{https://doi.org/10.1134/S0040577921030028}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000664262900002}


Linking options:
  • http://mi.mathnet.ru/eng/tmf9834
  • https://doi.org/10.4213/tmf9834
  • http://mi.mathnet.ru/eng/tmf/v206/i3/p295

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:86
    References:6
    First page:5

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022