Trudy Seminara imeni I. G. Petrovskogo
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Semim. im. I. G. Petrovskogo:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Semim. im. I. G. Petrovskogo, 2019, Issue 32, Pages 257–282 (Mi tsp110)  

On dynamic aggregation systems

N. L. Polyakov, M. V. Shamolin


Abstract: We consider consecutive aggregation procedures for individual preferences $\mathfrak c\in \mathfrak C_r(A)$ on a set of alternatives $A$, $|A|\geq 3$: on each step, the participants are subject to intermediate collective decisions on some subsets $B$ of the set $A$ and transform their a priori preferences according to an adaptation function $\mathcal{A}$. The sequence of intermediate decisions is determined by a lot $J$, i.e., an increasing (with respect to inclusion) sequence of subsets $B$ of the set of alternatives. An explicit classification is given for the clones of local aggregation functions, each clone consisting of all aggregation functions that dynamically preserve a symmetric set $\mathfrak D\subseteq \mathfrak C_r(A)$ with respect to a symmetric set of lots $\mathcal{J}$. On the basis of this classification, it is shown that a clone $\mathcal{F}$ of local aggregation functions that preserves the set $\mathfrak{R}_2(A)$ of rational preferences with respect to a symmetric set $\mathcal{J}$ contains nondictatorial aggregation functions if and only if $\mathcal{J}$ is a set of maximal lots, in which case the clone $\mathcal{F}$ is generated by the majority function. On the basis of each local aggregation function $f$, lot $J$, and an adaptation function $\mathcal{A}$, one constructs a nonlocal (in general) aggregation function $f_{J,A}$ that imitates a consecutive aggregation procesure. If $f$ dynamically preserves a set $\mathfrak D\subseteq \mathfrak C_r(A)$ with respect to a set of lots $\mathcal{J}$, then the aggregation function $f_{J,A}$ preserves the set $\mathfrak{D}$ for each lot $J\in\mathcal{J}$. If $\mathfrak D=\mathfrak R_2(A)$, then the adaptation function can be chosen in such a way that in any profile $\mathbf c\in (\mathfrak R_2(A))^n$, the Condorcet winner (if it exists) would coincide with the maximal element with respect to the preferences $f_{J, \mathcal A}(\mathbf c)$ for each maximal lot $J$ and $f$ that dynamically preserves the set of rational preferences with respect to the set of maximal lots.

Full text: PDF file (269 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2020, 244:2, 278–293

UDC: 510.6+510.633

Citation: N. L. Polyakov, M. V. Shamolin, “On dynamic aggregation systems”, Tr. Semim. im. I. G. Petrovskogo, 32, 2019, 257–282; J. Math. Sci. (N. Y.), 244:2 (2020), 278–293

Citation in format AMSBIB
\Bibitem{PolSha19}
\by N.~L.~Polyakov, M.~V.~Shamolin
\paper On dynamic aggregation systems
\serial Tr. Semim. im. I. G. Petrovskogo
\yr 2019
\vol 32
\pages 257--282
\mathnet{http://mi.mathnet.ru/tsp110}
\elib{https://elibrary.ru/item.asp?id=43209420}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2020
\vol 244
\issue 2
\pages 278--293
\crossref{https://doi.org/10.1007/s10958-019-04619-w}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075857577}


Linking options:
  • http://mi.mathnet.ru/eng/tsp110
  • http://mi.mathnet.ru/eng/tsp/v32/p257

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:38
    Full text:11
    References:2

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021