|
Тр. сем. им. И. Г. Петровского, 2013, выпуск 29, страницы 333–345
(Mi tsp8)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
О стабилизации решений нелинейного уравнения Фоккера–Планка
А. А. Коньков
Аннотация:
Для положительных решений уравнения $$ \operatorname{div} (u^\sigma Du) + b (x) D u - u_t = f (x) g (u),\quad x \in \mathbb R^n, t \in (0, \infty), $$ где $b\colon \mathbb R^n \to \mathbb R^n$ и $f\colon \mathbb R^n \to [0, \infty)$ — локально ограниченные измеримые функции, а $g\colon (0, \infty) \to (0, \infty)$ непрерывна и монотонно не убывает, получены условия стабилизации к нулю при $t \to \infty$.
Полный текст:
PDF файл (129 kB)
Список литературы:
PDF файл
HTML файл
Англоязычная версия:
Journal of Mathematical Sciences (New York), 2014, 197:3, 358–366
Реферативные базы данных:
Тип публикации:
Статья
УДК:
517.91
Образец цитирования:
А. А. Коньков, “О стабилизации решений нелинейного уравнения Фоккера–Планка”, Тр. сем. им. И. Г. Петровского, 29, Изд-во Моск. ун-та, М., 2013, 333–345; J. Math. Sci. (N. Y.), 197:3 (2014), 358–366
Цитирование в формате AMSBIB
\RBibitem{Kon13}
\by А.~А.~Коньков
\paper О стабилизации решений нелинейного уравнения Фоккера--Планка
\serial Тр. сем. им. И.~Г.~Петровского
\yr 2013
\vol 29
\pages 333--345
\publ Изд-во Моск. ун-та
\publaddr М.
\mathnet{http://mi.mathnet.ru/tsp8}
\elib{https://elibrary.ru/item.asp?id=21864456}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 197
\issue 3
\pages 358--366
\crossref{https://doi.org/10.1007/s10958-014-1718-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84893726057}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/tsp8 http://mi.mathnet.ru/rus/tsp/v29/p333
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
А. А. Коньков, “О принципе максимума для одного класса нелинейных параболических уравнений”, Вестн. СамГУ. Естественнонаучн. сер., 2015, № 6(128), 89–92
-
А. А. Коньков, “О принципе максимума для нелинейных параболических уравнений”, Тр. сем. им. И. Г. Петровского, 31, Изд-во Моск. ун-та, М., 2016, 63–86
; A. A. Kon'kov, “Maximum principle for nonlinear parabolic equations”, J. Math. Sci. (N. Y.), 234:4 (2018), 423–439
|
Просмотров: |
Эта страница: | 133 | Полный текст: | 53 | Литература: | 21 |
|