Trudy Seminara imeni I. G. Petrovskogo
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Semim. im. I. G. Petrovskogo:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Semim. im. I. G. Petrovskogo, 2016, Issue 31, Pages 257–323 (Mi tsp98)  

This article is cited in 1 scientific paper (total in 1 paper)

Integrable systems on the tangent bundle of a multi-dimensional sphere

M. V. Shamolin


Abstract: This paper contains a systematic exposition of some results on the equations of motion of a dynamically symmetric $n$-dimensional rigid body in a nonconservative field of forces. Similar bodies are considered in the dynamics of actual rigid bodies interacting with a resisting medium under the conditions of jet flow past the body with a nonconservative following force acting on the body in such a way that its characteristic point has a constant velocity, which means that the system has a nonintegrable servo-constraint.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-01-00848-


Full text: PDF file (418 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2018, 234:4, 548–590

UDC: 517.9+531.01

Citation: M. V. Shamolin, “Integrable systems on the tangent bundle of a multi-dimensional sphere”, Tr. Semim. im. I. G. Petrovskogo, 31, 2016, 257–323; J. Math. Sci. (N. Y.), 234:4 (2018), 548–590

Citation in format AMSBIB
\Bibitem{Sha16}
\by M.~V.~Shamolin
\paper Integrable systems on the tangent bundle of a multi-dimensional sphere
\serial Tr. Semim. im. I. G. Petrovskogo
\yr 2016
\vol 31
\pages 257--323
\mathnet{http://mi.mathnet.ru/tsp98}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 234
\issue 4
\pages 548--590
\crossref{https://doi.org/10.1007/s10958-018-4028-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052898457}


Linking options:
  • http://mi.mathnet.ru/eng/tsp98
  • http://mi.mathnet.ru/eng/tsp/v31/p257

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. V. Shamolin, “Sluchai integriruemosti uravnenii dvizheniya pyatimernogo tverdogo tela pri nalichii vnutrennego i vneshnego silovykh polei”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 187, VINITI RAN, M., 2020, 82–118  mathnet  crossref
  • Number of views:
    This page:130
    Full text:30
    References:13

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021