RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2005, Volume 50, Issue 2, Pages 209–223 (Mi tvp104)  

This article is cited in 1 scientific paper (total in 1 paper)

On optimality in probability and almost surely for processes with communication property. II. Continuous time

T. A. Belkinaa, V. I. Rotar'ab

a Central Economics and Mathematics Institute, RAS
b San Diego State University

Abstract: The paper is a continuation of [T. A. Belkina and V. I. Rotar, Theory Probab. Appl., 50 (2006), pp. 16–33] that deals with conditions under which the strategy minimizing the expected value of the cost functional is asymptotically optimal almost surely or in probability. The former means that the strategy mentioned minimizes the random cost functional itself for all realizations of the controlled process from a set, the probability of which is close to one for large time horizons. The definition of asymptotic optimality in probability is similar with natural changes. The main difference between the conditions of this paper and those obtained earlier is that the former do not deal with value function properties but concern a possibility of transition of the controlled process from one state to another in a time with a finite expectation. In the first part we dealt with the discrete time case; in this second part we cover controlled diffusion processes.

Keywords: controlled processes, controlled diffusion processes, optimal control, asymptotic optimality, optimality almost surely.

DOI: https://doi.org/10.4213/tvp104

Full text: PDF file (1427 kB)

English version:
Theory of Probability and its Applications, 2006, 50:2, 187–198

Bibliographic databases:

Received: 08.04.2003

Citation: T. A. Belkina, V. I. Rotar', “On optimality in probability and almost surely for processes with communication property. II. Continuous time”, Teor. Veroyatnost. i Primenen., 50:2 (2005), 209–223; Theory Probab. Appl., 50:2 (2006), 187–198

Citation in format AMSBIB
\Bibitem{BelRot05}
\by T.~A.~Belkina, V.~I.~Rotar'
\paper On optimality in probability and almost surely for processes with communication property. II.~Continuous time
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 2
\pages 209--223
\mathnet{http://mi.mathnet.ru/tvp104}
\crossref{https://doi.org/10.4213/tvp104}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2221709}
\zmath{https://zbmath.org/?q=an:1094.60050}
\elib{http://elibrary.ru/item.asp?id=9153119}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 2
\pages 187--198
\crossref{https://doi.org/10.1137/S0040585X97981615}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000238760000002}


Linking options:
  • http://mi.mathnet.ru/eng/tvp104
  • https://doi.org/10.4213/tvp104
  • http://mi.mathnet.ru/eng/tvp/v50/i2/p209

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. T. A. Belkina, M. S. Levochkina, “Stochastic optimality in the problem of a linear controller perturbed by a sequence of dependent random variables”, Discrete Math. Appl., 16:2 (2006), 135–153  mathnet  crossref  crossref  mathscinet  zmath  elib
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:444
    Full text:40

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019