RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1980, Volume 25, Issue 3, Pages 513–522 (Mi tvp1091)  

This article is cited in 2 scientific papers (total in 2 papers)

Central limit theorem for the spectrum of random Jacobi's matrices

A. Ja. Reznikova

Moscow

Abstract: We consider the Jacobi's difference operator (infinite-dimensional matrix) such that the random variables on its main diagonal are independent and identically distributed with continuous density having compact support. The spectral properties of this operator are studied and the central limit theorem for the spectral distribution function is proved.

Full text: PDF file (664 kB)

English version:
Theory of Probability and its Applications, 1981, 25:3, 504–513

Bibliographic databases:

Received: 19.03.1979

Citation: A. Ja. Reznikova, “Central limit theorem for the spectrum of random Jacobi's matrices”, Teor. Veroyatnost. i Primenen., 25:3 (1980), 513–522; Theory Probab. Appl., 25:3 (1981), 504–513

Citation in format AMSBIB
\Bibitem{Rez80}
\by A.~Ja.~Reznikova
\paper Central limit theorem for the spectrum of random Jacobi's matrices
\jour Teor. Veroyatnost. i Primenen.
\yr 1980
\vol 25
\issue 3
\pages 513--522
\mathnet{http://mi.mathnet.ru/tvp1091}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=582581}
\zmath{https://zbmath.org/?q=an:0462.60028|0436.60021}
\transl
\jour Theory Probab. Appl.
\yr 1981
\vol 25
\issue 3
\pages 504--513
\crossref{https://doi.org/10.1137/1125062}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1980MB70100006}


Linking options:
  • http://mi.mathnet.ru/eng/tvp1091
  • http://mi.mathnet.ru/eng/tvp/v25/i3/p513

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. W. Kirsсh, L. Pastur, “On the analogues of Szegő's theorem for ergodic operators”, Sb. Math., 206:1 (2015), 93–119  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. L. Pastur, M. Shcherbina, “Szegö-type theorems for one-dimensional Schrödinger operator with random potential (smooth case)”, Zhurn. matem. fiz., anal., geom., 14:3 (2018), 362–388  mathnet
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:145
    Full text:82

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020