RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2005, Volume 50, Issue 2, Pages 331–343 (Mi tvp110)  

This article is cited in 1 scientific paper (total in 1 paper)

An information-theoretic central limit theorem for finitely susceptible FKG systems

O. Johnson

Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge

Abstract: We adapt arguments concerning entropy-theoretic convergence from the independent case to the case of Fortuin–Kasteleyn–Ginibre (FKG) random variables. FKG systems are chosen since their dependence structure is controlled through covariance alone, though in what follows we use many of the same arguments for weakly dependent random variables. As in previous work of Barron and Johnson, we consider random variables perturbed by small normals, since the FKG property gives us control of the resulting densities. We need to impose a finite susceptibility condition; that is, the covariance between one random variable and the sum of all the random variables should remain finite.

Keywords: normal convergence, entropy, Fisher information, FKG variables.

DOI: https://doi.org/10.4213/tvp110

Full text: PDF file (1195 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2006, 50:2, 214–224

Bibliographic databases:

Received: 12.10.2001
Language:

Citation: O. Johnson, “An information-theoretic central limit theorem for finitely susceptible FKG systems”, Teor. Veroyatnost. i Primenen., 50:2 (2005), 331–343; Theory Probab. Appl., 50:2 (2006), 214–224

Citation in format AMSBIB
\Bibitem{Joh05}
\by O.~Johnson
\paper An information-theoretic central limit theorem for finitely susceptible FKG systems
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 2
\pages 331--343
\mathnet{http://mi.mathnet.ru/tvp110}
\crossref{https://doi.org/10.4213/tvp110}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2221715}
\zmath{https://zbmath.org/?q=an:05031073}
\elib{http://elibrary.ru/item.asp?id=9153125}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 2
\pages 214--224
\crossref{https://doi.org/10.1137/S0040585X97981676}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000238760000004}


Linking options:
  • http://mi.mathnet.ru/eng/tvp110
  • https://doi.org/10.4213/tvp110
  • http://mi.mathnet.ru/eng/tvp/v50/i2/p331

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Mishchenko Yu., “Consistent estimation of complete neuronal connectivity in large neuronal populations using sparse ?shotgun? neuronal activity sampling”, J. Comput. Neurosci., 41:2 (2016), 157–184  crossref  mathscinet  zmath  isi  scopus
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:147
    Full text:65
    References:23

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020