|
Stochastic differential equations depending on a parameter
A. V. Skorohod Kiev
Abstract:
We consider a stochastic differential equation
$$
d\xi_\theta=a_\theta(t,\xi_\theta( \cdot )) dt+B_\theta(t,\xi_\theta(t)) dw(t),\qquad\xi_\theta(0)=x_\theta,
$$
such that its coefficients and initial condition are continuous functions of $\theta\in\Theta$, where
$\Theta$ is a complete metric space. If an equation has a strong solution on a dense subset
$\Theta_1\subset\Theta$, then $\Theta_1$ is of the second category and coincides with the set $\Theta_0$ of
continuity of $\xi_\theta(t)$.
Full text:
PDF file (467 kB)
English version:
Theory of Probability and its Applications, 1981, 25:4, 659–666
Bibliographic databases:
Received: 04.07.1979
Citation:
A. V. Skorohod, “Stochastic differential equations depending on a parameter”, Teor. Veroyatnost. i Primenen., 25:4 (1980), 675–682; Theory Probab. Appl., 25:4 (1981), 659–666
Citation in format AMSBIB
\Bibitem{Sko80}
\by A.~V.~Skorohod
\paper Stochastic differential equations depending on a~parameter
\jour Teor. Veroyatnost. i Primenen.
\yr 1980
\vol 25
\issue 4
\pages 675--682
\mathnet{http://mi.mathnet.ru/tvp1224}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=595131}
\zmath{https://zbmath.org/?q=an:0471.60067|0454.60058}
\transl
\jour Theory Probab. Appl.
\yr 1981
\vol 25
\issue 4
\pages 659--666
\crossref{https://doi.org/10.1137/1125083}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1980MK50200001}
Linking options:
http://mi.mathnet.ru/eng/tvp1224 http://mi.mathnet.ru/eng/tvp/v25/i4/p675
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 233 | Full text: | 119 | First page: | 1 |
|